Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobida Structured version   Unicode version

Theorem rmobida 2897
 Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmobida.1
rmobida.2
Assertion
Ref Expression
rmobida

Proof of Theorem rmobida
StepHypRef Expression
1 rmobida.1 . . 3
2 rmobida.2 . . . 4
32pm5.32da 624 . . 3
41, 3mobid 2317 . 2
5 df-rmo 2715 . 2
6 df-rmo 2715 . 2
74, 5, 63bitr4g 281 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360  wnf 1554   wcel 1726  wmo 2284  wrmo 2710 This theorem is referenced by:  rmobidva  2898  reuan  27936 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-eu 2287  df-mo 2288  df-rmo 2715
 Copyright terms: Public domain W3C validator