Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobidva Structured version   Unicode version

Theorem rmobidva 2898
 Description: Formula-building rule for restricted existential quantifier (deduction rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobidva.1
Assertion
Ref Expression
rmobidva
Distinct variable group:   ,
Allowed substitution hints:   ()   ()   ()

Proof of Theorem rmobidva
StepHypRef Expression
1 nfv 1630 . 2
2 rmobidva.1 . 2
31, 2rmobida 2897 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 178   wa 360   wcel 1726  wrmo 2710 This theorem is referenced by:  rmobidv  2899  brdom7disj  8411 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-eu 2287  df-mo 2288  df-rmo 2715
 Copyright terms: Public domain W3C validator