MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobiia Structured version   Unicode version

Theorem rmobiia 2898
Description: Formula-building rule for restricted existential quantifier (inference rule). (Contributed by NM, 16-Jun-2017.)
Hypothesis
Ref Expression
rmobiia.1  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rmobiia  |-  ( E* x  e.  A ph  <->  E* x  e.  A ps )

Proof of Theorem rmobiia
StepHypRef Expression
1 rmobiia.1 . . . 4  |-  ( x  e.  A  ->  ( ph 
<->  ps ) )
21pm5.32i 619 . . 3  |-  ( ( x  e.  A  /\  ph )  <->  ( x  e.  A  /\  ps )
)
32mobii 2317 . 2  |-  ( E* x ( x  e.  A  /\  ph )  <->  E* x ( x  e.  A  /\  ps )
)
4 df-rmo 2713 . 2  |-  ( E* x  e.  A ph  <->  E* x ( x  e.  A  /\  ph )
)
5 df-rmo 2713 . 2  |-  ( E* x  e.  A ps  <->  E* x ( x  e.  A  /\  ps )
)
63, 4, 53bitr4i 269 1  |-  ( E* x  e.  A ph  <->  E* x  e.  A ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    e. wcel 1725   E*wmo 2282   E*wrmo 2708
This theorem is referenced by:  rmobii  2899
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2285  df-mo 2286  df-rmo 2713
  Copyright terms: Public domain W3C validator