MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoi Unicode version

Theorem rmoi 3210
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmoi.b  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
rmoi.c  |-  ( x  =  C  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rmoi  |-  ( ( E* x  e.  A ph  /\  ( B  e.  A  /\  ps )  /\  ( C  e.  A  /\  ch ) )  ->  B  =  C )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x
Allowed substitution hint:    ph( x)

Proof of Theorem rmoi
StepHypRef Expression
1 rmoi.b . . 3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
2 rmoi.c . . 3  |-  ( x  =  C  ->  ( ph 
<->  ch ) )
31, 2rmob 3209 . 2  |-  ( ( E* x  e.  A ph  /\  ( B  e.  A  /\  ps )
)  ->  ( B  =  C  <->  ( C  e.  A  /\  ch )
) )
43biimp3ar 1284 1  |-  ( ( E* x  e.  A ph  /\  ( B  e.  A  /\  ps )  /\  ( C  e.  A  /\  ch ) )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   E*wrmo 2669
This theorem is referenced by:  eqsqrd  12126  efgred2  15340  0frgp  15366  frgpnabllem2  15440  frgpcyg  16809  qtophmeo  17802  proot1mul  27383  cdleme0moN  30707
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-rmo 2674  df-v 2918
  Copyright terms: Public domain W3C validator