MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoi Unicode version

Theorem rmoi 3166
Description: Consequence of "at most one", using implicit substitution. (Contributed by NM, 4-Nov-2012.) (Revised by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmoi.b  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
rmoi.c  |-  ( x  =  C  ->  ( ph 
<->  ch ) )
Assertion
Ref Expression
rmoi  |-  ( ( E* x  e.  A ph  /\  ( B  e.  A  /\  ps )  /\  ( C  e.  A  /\  ch ) )  ->  B  =  C )
Distinct variable groups:    x, A    x, B    x, C    ps, x    ch, x
Allowed substitution hint:    ph( x)

Proof of Theorem rmoi
StepHypRef Expression
1 rmoi.b . . 3  |-  ( x  =  B  ->  ( ph 
<->  ps ) )
2 rmoi.c . . 3  |-  ( x  =  C  ->  ( ph 
<->  ch ) )
31, 2rmob 3165 . 2  |-  ( ( E* x  e.  A ph  /\  ( B  e.  A  /\  ps )
)  ->  ( B  =  C  <->  ( C  e.  A  /\  ch )
) )
43biimp3ar 1283 1  |-  ( ( E* x  e.  A ph  /\  ( B  e.  A  /\  ps )  /\  ( C  e.  A  /\  ch ) )  ->  B  =  C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   E*wrmo 2631
This theorem is referenced by:  eqsqrd  12058  efgred2  15272  0frgp  15298  frgpnabllem2  15372  frgpcyg  16744  qtophmeo  17725  proot1mul  27021  cdleme0moN  30485
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-rmo 2636  df-v 2875
  Copyright terms: Public domain W3C validator