Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoimi2 Structured version   Unicode version

Theorem rmoimi2 3137
 Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimi2.1
Assertion
Ref Expression
rmoimi2

Proof of Theorem rmoimi2
StepHypRef Expression
1 rmoimi2.1 . . 3
2 moim 2329 . . 3
31, 2ax-mp 8 . 2
4 df-rmo 2715 . 2
5 df-rmo 2715 . 2
63, 4, 53imtr4i 259 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 360  wal 1550   wcel 1726  wmo 2284  wrmo 2710 This theorem is referenced by:  disjin  24029 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-rmo 2715
 Copyright terms: Public domain W3C validator