MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoimia Unicode version

Theorem rmoimia 2965
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Hypothesis
Ref Expression
rmoimia.1  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
Assertion
Ref Expression
rmoimia  |-  ( E* x  e.  A ps  ->  E* x  e.  A ph )

Proof of Theorem rmoimia
StepHypRef Expression
1 rmoim 2964 . 2  |-  ( A. x  e.  A  ( ph  ->  ps )  -> 
( E* x  e.  A ps  ->  E* x  e.  A ph ) )
2 rmoimia.1 . 2  |-  ( x  e.  A  ->  ( ph  ->  ps ) )
31, 2mprg 2612 1  |-  ( E* x  e.  A ps  ->  E* x  e.  A ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1684   E*wrmo 2546
This theorem is referenced by:  rmoimi  27954  2reu1  27964
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-ral 2548  df-rmo 2551
  Copyright terms: Public domain W3C validator