MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmorabex Unicode version

Theorem rmorabex 4233
Description: Restricted "at most one" existence implies a restricted class abstraction exists. (Contributed by NM, 17-Jun-2017.)
Assertion
Ref Expression
rmorabex  |-  ( E* x  e.  A ph  ->  { x  e.  A  |  ph }  e.  _V )

Proof of Theorem rmorabex
StepHypRef Expression
1 moabex 4232 . 2  |-  ( E* x ( x  e.  A  /\  ph )  ->  { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
2 df-rmo 2551 . 2  |-  ( E* x  e.  A ph  <->  E* x ( x  e.  A  /\  ph )
)
3 df-rab 2552 . . 3  |-  { x  e.  A  |  ph }  =  { x  |  ( x  e.  A  /\  ph ) }
43eleq1i 2346 . 2  |-  ( { x  e.  A  |  ph }  e.  _V  <->  { x  |  ( x  e.  A  /\  ph ) }  e.  _V )
51, 2, 43imtr4i 257 1  |-  ( E* x  e.  A ph  ->  { x  e.  A  |  ph }  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1684   E*wmo 2144   {cab 2269   E*wrmo 2546   {crab 2547   _Vcvv 2788
This theorem is referenced by:  supexd  7204
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-rmo 2551  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-sn 3646  df-pr 3647
  Copyright terms: Public domain W3C validator