Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxfval Unicode version

Theorem rmxfval 27092
Description: Value of the X sequence. Not used after rmxyval 27103 is proved. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxfval  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) ) )
Distinct variable groups:    A, b    N, b

Proof of Theorem rmxfval
Dummy variables  n  a are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5881 . . . . . . . . . . 11  |-  ( a  =  A  ->  (
a ^ 2 )  =  ( A ^
2 ) )
21oveq1d 5889 . . . . . . . . . 10  |-  ( a  =  A  ->  (
( a ^ 2 )  -  1 )  =  ( ( A ^ 2 )  - 
1 ) )
32fveq2d 5545 . . . . . . . . 9  |-  ( a  =  A  ->  ( sqr `  ( ( a ^ 2 )  - 
1 ) )  =  ( sqr `  (
( A ^ 2 )  -  1 ) ) )
43oveq1d 5889 . . . . . . . 8  |-  ( a  =  A  ->  (
( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )
54oveq2d 5890 . . . . . . 7  |-  ( a  =  A  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )
65mpteq2dv 4123 . . . . . 6  |-  ( a  =  A  ->  (
b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
76cnveqd 4873 . . . . 5  |-  ( a  =  A  ->  `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
87adantr 451 . . . 4  |-  ( ( a  =  A  /\  n  =  N )  ->  `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  `' ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) )
9 id 19 . . . . . 6  |-  ( a  =  A  ->  a  =  A )
109, 3oveq12d 5892 . . . . 5  |-  ( a  =  A  ->  (
a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) )  =  ( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) )
11 id 19 . . . . 5  |-  ( n  =  N  ->  n  =  N )
1210, 11oveqan12d 5893 . . . 4  |-  ( ( a  =  A  /\  n  =  N )  ->  ( ( a  +  ( sqr `  (
( a ^ 2 )  -  1 ) ) ) ^ n
)  =  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) )
138, 12fveq12d 5547 . . 3  |-  ( ( a  =  A  /\  n  =  N )  ->  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( a ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  (
( a  +  ( sqr `  ( ( a ^ 2 )  -  1 ) ) ) ^ n ) )  =  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) )
1413fveq2d 5545 . 2  |-  ( ( a  =  A  /\  n  =  N )  ->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) ) ^
n ) ) )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( A  +  ( sqr `  ( ( A ^
2 )  -  1 ) ) ) ^ N ) ) ) )
15 df-rmx 27090 . 2  |- Xrm  =  (
a  e.  ( ZZ>= ` 
2 ) ,  n  e.  ZZ  |->  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( a ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  ( ( a  +  ( sqr `  ( ( a ^
2 )  -  1 ) ) ) ^
n ) ) ) )
16 fvex 5555 . 2  |-  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  (
( A  +  ( sqr `  ( ( A ^ 2 )  -  1 ) ) ) ^ N ) ) )  e.  _V
1714, 15, 16ovmpt2a 5994 1  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  N  e.  ZZ )  ->  ( A Xrm 
N )  =  ( 1st `  ( `' ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 ( ( A  +  ( sqr `  (
( A ^ 2 )  -  1 ) ) ) ^ N
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1632    e. wcel 1696    e. cmpt 4093    X. cxp 4703   `'ccnv 4704   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137   1c1 8754    + caddc 8756    x. cmul 8758    - cmin 9053   2c2 9811   NN0cn0 9981   ZZcz 10040   ZZ>=cuz 10246   ^cexp 11120   sqrcsqr 11734   Xrm crmx 27088
This theorem is referenced by:  rmxyval  27103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-iota 5235  df-fun 5273  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-rmx 27090
  Copyright terms: Public domain W3C validator