Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Unicode version

Theorem rmxypairf1o 26665
Description: The function used to extract rational and irrational parts in df-rmx 26656 and df-rmy 26657 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) : ( NN0 
X.  ZZ ) -1-1-onto-> { a  |  E. c  e. 
NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) ) } )
Distinct variable group:    b, c, d, a, A

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 6045 . . . 4  |-  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  e.  _V
2 eqid 2387 . . . 4  |-  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )
31, 2fnmpti 5513 . . 3  |-  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0  X.  ZZ )
43a1i 11 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0 
X.  ZZ ) )
5 vex 2902 . . . . . . . . . 10  |-  c  e. 
_V
6 vex 2902 . . . . . . . . . 10  |-  d  e. 
_V
75, 6op1std 6296 . . . . . . . . 9  |-  ( b  =  <. c ,  d
>.  ->  ( 1st `  b
)  =  c )
85, 6op2ndd 6297 . . . . . . . . . 10  |-  ( b  =  <. c ,  d
>.  ->  ( 2nd `  b
)  =  d )
98oveq2d 6036 . . . . . . . . 9  |-  ( b  =  <. c ,  d
>.  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) )
107, 9oveq12d 6038 . . . . . . . 8  |-  ( b  =  <. c ,  d
>.  ->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) )
1110eqeq2d 2398 . . . . . . 7  |-  ( b  =  <. c ,  d
>.  ->  ( a  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  <->  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) ) )
1211rexxp 4957 . . . . . 6  |-  ( E. b  e.  ( NN0 
X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  <->  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) )
1312bicomi 194 . . . . 5  |-  ( E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) )  <->  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )
1413a1i 11 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) )  <->  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
1514abbidv 2501 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) }  =  {
a  |  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) } )
162rnmpt 5056 . . 3  |-  ran  (
b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  { a  |  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) }
1715, 16syl6reqr 2438 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ran  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  {
a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) ) } )
18 fveq2 5668 . . . . . . . 8  |-  ( b  =  c  ->  ( 1st `  b )  =  ( 1st `  c
) )
19 fveq2 5668 . . . . . . . . 9  |-  ( b  =  c  ->  ( 2nd `  b )  =  ( 2nd `  c
) )
2019oveq2d 6036 . . . . . . . 8  |-  ( b  =  c  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c ) ) )
2118, 20oveq12d 6038 . . . . . . 7  |-  ( b  =  c  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) ) )
22 ovex 6045 . . . . . . 7  |-  ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  e.  _V
2321, 2, 22fvmpt 5745 . . . . . 6  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) ) )
2423ad2antrl 709 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  c
)  =  ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) ) )
25 fveq2 5668 . . . . . . . 8  |-  ( b  =  d  ->  ( 1st `  b )  =  ( 1st `  d
) )
26 fveq2 5668 . . . . . . . . 9  |-  ( b  =  d  ->  ( 2nd `  b )  =  ( 2nd `  d
) )
2726oveq2d 6036 . . . . . . . 8  |-  ( b  =  d  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d ) ) )
2825, 27oveq12d 6038 . . . . . . 7  |-  ( b  =  d  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) )
29 ovex 6045 . . . . . . 7  |-  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  e.  _V
3028, 2, 29fvmpt 5745 . . . . . 6  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 d )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) )
3130ad2antll 710 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d
)  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) ) )
3224, 31eqeq12d 2401 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  <-> 
( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) ) )
33 rmspecsqrnq 26660 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
3433adantr 452 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ ) )
35 nn0ssq 10514 . . . . . . . 8  |-  NN0  C_  QQ
36 xp1st 6315 . . . . . . . . 9  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( 1st `  c )  e.  NN0 )
3736ad2antrl 709 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  c
)  e.  NN0 )
3835, 37sseldi 3289 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  c
)  e.  QQ )
39 xp2nd 6316 . . . . . . . . 9  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( 2nd `  c )  e.  ZZ )
4039ad2antrl 709 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  c
)  e.  ZZ )
41 zq 10512 . . . . . . . 8  |-  ( ( 2nd `  c )  e.  ZZ  ->  ( 2nd `  c )  e.  QQ )
4240, 41syl 16 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  c
)  e.  QQ )
43 xp1st 6315 . . . . . . . . 9  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( 1st `  d )  e.  NN0 )
4443ad2antll 710 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  d
)  e.  NN0 )
4535, 44sseldi 3289 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  d
)  e.  QQ )
46 xp2nd 6316 . . . . . . . . 9  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( 2nd `  d )  e.  ZZ )
4746ad2antll 710 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  d
)  e.  ZZ )
48 zq 10512 . . . . . . . 8  |-  ( ( 2nd `  d )  e.  ZZ  ->  ( 2nd `  d )  e.  QQ )
4947, 48syl 16 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  d
)  e.  QQ )
50 qirropth 26662 . . . . . . 7  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( 1st `  c
)  e.  QQ  /\  ( 2nd `  c )  e.  QQ )  /\  ( ( 1st `  d
)  e.  QQ  /\  ( 2nd `  d )  e.  QQ ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  <->  ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) ) ) )
5134, 38, 42, 45, 49, 50syl122anc 1193 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  <->  ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) ) ) )
5251biimpd 199 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  ->  ( ( 1st `  c )  =  ( 1st `  d
)  /\  ( 2nd `  c )  =  ( 2nd `  d ) ) ) )
53 xpopth 6327 . . . . . 6  |-  ( ( c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) )  -> 
( ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) )  <->  c  =  d ) )
5453adantl 453 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  =  ( 1st `  d
)  /\  ( 2nd `  c )  =  ( 2nd `  d ) )  <->  c  =  d ) )
5552, 54sylibd 206 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  ->  c  =  d ) )
5632, 55sylbid 207 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  ->  c  =  d ) )
5756ralrimivva 2741 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  A. c  e.  ( NN0  X.  ZZ ) A. d  e.  ( NN0  X.  ZZ ) ( ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  c
)  =  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 d )  -> 
c  =  d ) )
58 dff1o6 5952 . 2  |-  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) : ( NN0  X.  ZZ ) -1-1-onto-> { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) ) }  <->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0  X.  ZZ )  /\  ran  ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) }  /\  A. c  e.  ( NN0  X.  ZZ ) A. d  e.  ( NN0  X.  ZZ ) ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  ->  c  =  d ) ) )
594, 17, 57, 58syl3anbrc 1138 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) : ( NN0 
X.  ZZ ) -1-1-onto-> { a  |  E. c  e. 
NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717   {cab 2373   A.wral 2649   E.wrex 2650    \ cdif 3260   <.cop 3760    e. cmpt 4207    X. cxp 4816   ran crn 4819    Fn wfn 5389   -1-1-onto->wf1o 5393   ` cfv 5394  (class class class)co 6020   1stc1st 6286   2ndc2nd 6287   CCcc 8921   1c1 8924    + caddc 8926    x. cmul 8928    - cmin 9223   2c2 9981   NN0cn0 10153   ZZcz 10214   ZZ>=cuz 10420   QQcq 10506   ^cexp 11309   sqrcsqr 11965
This theorem is referenced by:  rmxyelxp  26666  rmxyval  26669
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641  ax-cnex 8979  ax-resscn 8980  ax-1cn 8981  ax-icn 8982  ax-addcl 8983  ax-addrcl 8984  ax-mulcl 8985  ax-mulrcl 8986  ax-mulcom 8987  ax-addass 8988  ax-mulass 8989  ax-distr 8990  ax-i2m1 8991  ax-1ne0 8992  ax-1rid 8993  ax-rnegex 8994  ax-rrecex 8995  ax-cnre 8996  ax-pre-lttri 8997  ax-pre-lttrn 8998  ax-pre-ltadd 8999  ax-pre-mulgt0 9000  ax-pre-sup 9001
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-nel 2553  df-ral 2654  df-rex 2655  df-reu 2656  df-rmo 2657  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-1st 6288  df-2nd 6289  df-riota 6485  df-recs 6569  df-rdg 6604  df-er 6841  df-en 7046  df-dom 7047  df-sdom 7048  df-sup 7381  df-pnf 9055  df-mnf 9056  df-xr 9057  df-ltxr 9058  df-le 9059  df-sub 9225  df-neg 9226  df-div 9610  df-nn 9933  df-2 9990  df-3 9991  df-n0 10154  df-z 10215  df-uz 10421  df-q 10507  df-rp 10545  df-fl 11129  df-mod 11178  df-seq 11251  df-exp 11310  df-cj 11831  df-re 11832  df-im 11833  df-sqr 11967  df-abs 11968  df-dvds 12780  df-gcd 12934  df-numer 13054  df-denom 13055
  Copyright terms: Public domain W3C validator