Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmxypairf1o Unicode version

Theorem rmxypairf1o 26996
Description: The function used to extract rational and irrational parts in df-rmx 26987 and df-rmy 26988 in fact achieves a one-to-one mapping from the quadratic irrationals to pairs of integers. (Contributed by Stefan O'Rear, 21-Sep-2014.)
Assertion
Ref Expression
rmxypairf1o  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) : ( NN0 
X.  ZZ ) -1-1-onto-> { a  |  E. c  e. 
NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) ) } )
Distinct variable group:    b, c, d, a, A

Proof of Theorem rmxypairf1o
StepHypRef Expression
1 ovex 5883 . . . 4  |-  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  e.  _V
2 eqid 2283 . . . 4  |-  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )
31, 2fnmpti 5372 . . 3  |-  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0  X.  ZZ )
43a1i 10 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0 
X.  ZZ ) )
5 vex 2791 . . . . . . . . . 10  |-  c  e. 
_V
6 vex 2791 . . . . . . . . . 10  |-  d  e. 
_V
75, 6op1std 6130 . . . . . . . . 9  |-  ( b  =  <. c ,  d
>.  ->  ( 1st `  b
)  =  c )
85, 6op2ndd 6131 . . . . . . . . . 10  |-  ( b  =  <. c ,  d
>.  ->  ( 2nd `  b
)  =  d )
98oveq2d 5874 . . . . . . . . 9  |-  ( b  =  <. c ,  d
>.  ->  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) )
107, 9oveq12d 5876 . . . . . . . 8  |-  ( b  =  <. c ,  d
>.  ->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) )
1110eqeq2d 2294 . . . . . . 7  |-  ( b  =  <. c ,  d
>.  ->  ( a  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  <->  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) ) )
1211rexxp 4828 . . . . . 6  |-  ( E. b  e.  ( NN0 
X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) )  <->  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) )
1312bicomi 193 . . . . 5  |-  ( E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) )  <->  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )
1413a1i 10 . . . 4  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) )  <->  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) )
1514abbidv 2397 . . 3  |-  ( A  e.  ( ZZ>= `  2
)  ->  { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) }  =  {
a  |  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) } )
162rnmpt 4925 . . 3  |-  ran  (
b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  { a  |  E. b  e.  ( NN0  X.  ZZ ) a  =  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) }
1715, 16syl6reqr 2334 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  ran  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  =  {
a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) ) } )
18 fveq2 5525 . . . . . . . 8  |-  ( b  =  c  ->  ( 1st `  b )  =  ( 1st `  c
) )
19 fveq2 5525 . . . . . . . . 9  |-  ( b  =  c  ->  ( 2nd `  b )  =  ( 2nd `  c
) )
2019oveq2d 5874 . . . . . . . 8  |-  ( b  =  c  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c ) ) )
2118, 20oveq12d 5876 . . . . . . 7  |-  ( b  =  c  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) ) )
22 ovex 5883 . . . . . . 7  |-  ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  e.  _V
2321, 2, 22fvmpt 5602 . . . . . 6  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) ) )
2423ad2antrl 708 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  c
)  =  ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) ) )
25 fveq2 5525 . . . . . . . 8  |-  ( b  =  d  ->  ( 1st `  b )  =  ( 1st `  d
) )
26 fveq2 5525 . . . . . . . . 9  |-  ( b  =  d  ->  ( 2nd `  b )  =  ( 2nd `  d
) )
2726oveq2d 5874 . . . . . . . 8  |-  ( b  =  d  ->  (
( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) )  =  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d ) ) )
2825, 27oveq12d 5876 . . . . . . 7  |-  ( b  =  d  ->  (
( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) )
29 ovex 5883 . . . . . . 7  |-  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  e.  _V
3028, 2, 29fvmpt 5602 . . . . . 6  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 d )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) )
3130ad2antll 709 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d
)  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) ) )
3224, 31eqeq12d 2297 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  <-> 
( ( 1st `  c
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  c
) ) )  =  ( ( 1st `  d
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  d
) ) ) ) )
33 rmspecsqrnq 26991 . . . . . . . 8  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( sqr `  ( ( A ^
2 )  -  1 ) )  e.  ( CC  \  QQ ) )
3433adantr 451 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ ) )
35 nn0ssq 10324 . . . . . . . 8  |-  NN0  C_  QQ
36 xp1st 6149 . . . . . . . . 9  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( 1st `  c )  e.  NN0 )
3736ad2antrl 708 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  c
)  e.  NN0 )
3835, 37sseldi 3178 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  c
)  e.  QQ )
39 xp2nd 6150 . . . . . . . . 9  |-  ( c  e.  ( NN0  X.  ZZ )  ->  ( 2nd `  c )  e.  ZZ )
4039ad2antrl 708 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  c
)  e.  ZZ )
41 zq 10322 . . . . . . . 8  |-  ( ( 2nd `  c )  e.  ZZ  ->  ( 2nd `  c )  e.  QQ )
4240, 41syl 15 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  c
)  e.  QQ )
43 xp1st 6149 . . . . . . . . 9  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( 1st `  d )  e.  NN0 )
4443ad2antll 709 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  d
)  e.  NN0 )
4535, 44sseldi 3178 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 1st `  d
)  e.  QQ )
46 xp2nd 6150 . . . . . . . . 9  |-  ( d  e.  ( NN0  X.  ZZ )  ->  ( 2nd `  d )  e.  ZZ )
4746ad2antll 709 . . . . . . . 8  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  d
)  e.  ZZ )
48 zq 10322 . . . . . . . 8  |-  ( ( 2nd `  d )  e.  ZZ  ->  ( 2nd `  d )  e.  QQ )
4947, 48syl 15 . . . . . . 7  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( 2nd `  d
)  e.  QQ )
50 qirropth 26993 . . . . . . 7  |-  ( ( ( sqr `  (
( A ^ 2 )  -  1 ) )  e.  ( CC 
\  QQ )  /\  ( ( 1st `  c
)  e.  QQ  /\  ( 2nd `  c )  e.  QQ )  /\  ( ( 1st `  d
)  e.  QQ  /\  ( 2nd `  d )  e.  QQ ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  <->  ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) ) ) )
5134, 38, 42, 45, 49, 50syl122anc 1191 . . . . . 6  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  <->  ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) ) ) )
5251biimpd 198 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  ->  ( ( 1st `  c )  =  ( 1st `  d
)  /\  ( 2nd `  c )  =  ( 2nd `  d ) ) ) )
53 xpopth 6161 . . . . . 6  |-  ( ( c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) )  -> 
( ( ( 1st `  c )  =  ( 1st `  d )  /\  ( 2nd `  c
)  =  ( 2nd `  d ) )  <->  c  =  d ) )
5453adantl 452 . . . . 5  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  =  ( 1st `  d
)  /\  ( 2nd `  c )  =  ( 2nd `  d ) )  <->  c  =  d ) )
5552, 54sylibd 205 . . . 4  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( 1st `  c )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  c ) ) )  =  ( ( 1st `  d )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  d ) ) )  ->  c  =  d ) )
5632, 55sylbid 206 . . 3  |-  ( ( A  e.  ( ZZ>= ` 
2 )  /\  (
c  e.  ( NN0 
X.  ZZ )  /\  d  e.  ( NN0  X.  ZZ ) ) )  ->  ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  ->  c  =  d ) )
5756ralrimivva 2635 . 2  |-  ( A  e.  ( ZZ>= `  2
)  ->  A. c  e.  ( NN0  X.  ZZ ) A. d  e.  ( NN0  X.  ZZ ) ( ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  c
)  =  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 d )  -> 
c  =  d ) )
58 dff1o6 5791 . 2  |-  ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) : ( NN0  X.  ZZ ) -1-1-onto-> { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  d ) ) }  <->  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) )  Fn  ( NN0  X.  ZZ )  /\  ran  ( b  e.  ( NN0  X.  ZZ ) 
|->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) )  =  { a  |  E. c  e.  NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  d ) ) }  /\  A. c  e.  ( NN0  X.  ZZ ) A. d  e.  ( NN0  X.  ZZ ) ( ( ( b  e.  ( NN0 
X.  ZZ )  |->  ( ( 1st `  b
)  +  ( ( sqr `  ( ( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b
) ) ) ) `
 c )  =  ( ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) `  d )  ->  c  =  d ) ) )
594, 17, 57, 58syl3anbrc 1136 1  |-  ( A  e.  ( ZZ>= `  2
)  ->  ( b  e.  ( NN0  X.  ZZ )  |->  ( ( 1st `  b )  +  ( ( sqr `  (
( A ^ 2 )  -  1 ) )  x.  ( 2nd `  b ) ) ) ) : ( NN0 
X.  ZZ ) -1-1-onto-> { a  |  E. c  e. 
NN0  E. d  e.  ZZ  a  =  ( c  +  ( ( sqr `  ( ( A ^
2 )  -  1 ) )  x.  d
) ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1623    e. wcel 1684   {cab 2269   A.wral 2543   E.wrex 2544    \ cdif 3149   <.cop 3643    e. cmpt 4077    X. cxp 4687   ran crn 4690    Fn wfn 5250   -1-1-onto->wf1o 5254   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121   CCcc 8735   1c1 8738    + caddc 8740    x. cmul 8742    - cmin 9037   2c2 9795   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   QQcq 10316   ^cexp 11104   sqrcsqr 11718
This theorem is referenced by:  rmxyelxp  26997  rmxyval  27000
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-numer 12806  df-denom 12807
  Copyright terms: Public domain W3C validator