MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncmp Unicode version

Theorem rncmp 17382
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
rncmp  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( Kt  ran  F )  e.  Comp )

Proof of Theorem rncmp
StepHypRef Expression
1 simpl 444 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  Comp )
2 eqid 2388 . . . . . . 7  |-  U. J  =  U. J
3 eqid 2388 . . . . . . 7  |-  U. K  =  U. K
42, 3cnf 17233 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
54adantl 453 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J --> U. K
)
6 ffn 5532 . . . . 5  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
75, 6syl 16 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F  Fn  U. J )
8 dffn4 5600 . . . 4  |-  ( F  Fn  U. J  <->  F : U. J -onto-> ran  F )
97, 8sylib 189 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J -onto-> ran  F
)
10 cntop2 17228 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
1110adantl 453 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
12 frn 5538 . . . . . 6  |-  ( F : U. J --> U. K  ->  ran  F  C_  U. K
)
135, 12syl 16 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ran  F 
C_  U. K )
143restuni 17149 . . . . 5  |-  ( ( K  e.  Top  /\  ran  F  C_  U. K )  ->  ran  F  =  U. ( Kt  ran  F ) )
1511, 13, 14syl2anc 643 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ran  F  =  U. ( Kt  ran 
F ) )
16 foeq3 5592 . . . 4  |-  ( ran 
F  =  U. ( Kt  ran  F )  ->  ( F : U. J -onto-> ran  F  <-> 
F : U. J -onto-> U. ( Kt  ran  F ) ) )
1715, 16syl 16 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( F : U. J -onto-> ran  F  <-> 
F : U. J -onto-> U. ( Kt  ran  F ) ) )
189, 17mpbid 202 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J -onto-> U. ( Kt  ran  F ) )
19 simpr 448 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  K
) )
203toptopon 16922 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
2111, 20sylib 189 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  (TopOn `  U. K ) )
22 ssid 3311 . . . . 5  |-  ran  F  C_ 
ran  F
2322a1i 11 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ran  F 
C_  ran  F )
24 cnrest2 17273 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  F 
C_  ran  F  /\  ran  F  C_  U. K )  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
2521, 23, 13, 24syl3anc 1184 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  ran  F ) ) ) )
2619, 25mpbid 202 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  ( Kt  ran  F ) ) )
27 eqid 2388 . . 3  |-  U. ( Kt  ran  F )  =  U. ( Kt  ran  F )
2827cncmp 17378 . 2  |-  ( ( J  e.  Comp  /\  F : U. J -onto-> U. ( Kt  ran  F )  /\  F  e.  ( J  Cn  ( Kt  ran  F ) ) )  ->  ( Kt  ran  F
)  e.  Comp )
291, 18, 26, 28syl3anc 1184 1  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( Kt  ran  F )  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1649    e. wcel 1717    C_ wss 3264   U.cuni 3958   ran crn 4820    Fn wfn 5390   -->wf 5391   -onto->wfo 5393   ` cfv 5395  (class class class)co 6021   ↾t crest 13576   Topctop 16882  TopOnctopon 16883    Cn ccn 17211   Compccmp 17372
This theorem is referenced by:  imacmp  17383  kgencn2  17511  bndth  18855
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-pss 3280  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-tp 3766  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-tr 4245  df-eprel 4436  df-id 4440  df-po 4445  df-so 4446  df-fr 4483  df-we 4485  df-ord 4526  df-on 4527  df-lim 4528  df-suc 4529  df-om 4787  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-recs 6570  df-rdg 6605  df-1o 6661  df-oadd 6665  df-er 6842  df-map 6957  df-en 7047  df-dom 7048  df-fin 7050  df-fi 7352  df-rest 13578  df-topgen 13595  df-top 16887  df-bases 16889  df-topon 16890  df-cn 17214  df-cmp 17373
  Copyright terms: Public domain W3C validator