MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rncmp Structured version   Unicode version

Theorem rncmp 17451
Description: The image of a compact set under a continuous function is compact. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
rncmp  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( Kt  ran  F )  e.  Comp )

Proof of Theorem rncmp
StepHypRef Expression
1 simpl 444 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  J  e.  Comp )
2 eqid 2435 . . . . . . 7  |-  U. J  =  U. J
3 eqid 2435 . . . . . . 7  |-  U. K  =  U. K
42, 3cnf 17302 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  F : U. J --> U. K
)
54adantl 453 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J --> U. K
)
6 ffn 5583 . . . . 5  |-  ( F : U. J --> U. K  ->  F  Fn  U. J
)
75, 6syl 16 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F  Fn  U. J )
8 dffn4 5651 . . . 4  |-  ( F  Fn  U. J  <->  F : U. J -onto-> ran  F )
97, 8sylib 189 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J -onto-> ran  F
)
10 cntop2 17297 . . . . . 6  |-  ( F  e.  ( J  Cn  K )  ->  K  e.  Top )
1110adantl 453 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  Top )
12 frn 5589 . . . . . 6  |-  ( F : U. J --> U. K  ->  ran  F  C_  U. K
)
135, 12syl 16 . . . . 5  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ran  F 
C_  U. K )
143restuni 17218 . . . . 5  |-  ( ( K  e.  Top  /\  ran  F  C_  U. K )  ->  ran  F  =  U. ( Kt  ran  F ) )
1511, 13, 14syl2anc 643 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ran  F  =  U. ( Kt  ran 
F ) )
16 foeq3 5643 . . . 4  |-  ( ran 
F  =  U. ( Kt  ran  F )  ->  ( F : U. J -onto-> ran  F  <-> 
F : U. J -onto-> U. ( Kt  ran  F ) ) )
1715, 16syl 16 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( F : U. J -onto-> ran  F  <-> 
F : U. J -onto-> U. ( Kt  ran  F ) ) )
189, 17mpbid 202 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F : U. J -onto-> U. ( Kt  ran  F ) )
19 simpr 448 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  K
) )
203toptopon 16990 . . . . 5  |-  ( K  e.  Top  <->  K  e.  (TopOn `  U. K ) )
2111, 20sylib 189 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  K  e.  (TopOn `  U. K ) )
22 ssid 3359 . . . . 5  |-  ran  F  C_ 
ran  F
2322a1i 11 . . . 4  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ran  F 
C_  ran  F )
24 cnrest2 17342 . . . 4  |-  ( ( K  e.  (TopOn `  U. K )  /\  ran  F 
C_  ran  F  /\  ran  F  C_  U. K )  ->  ( F  e.  ( J  Cn  K
)  <->  F  e.  ( J  Cn  ( Kt  ran  F
) ) ) )
2521, 23, 13, 24syl3anc 1184 . . 3  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( F  e.  ( J  Cn  K )  <->  F  e.  ( J  Cn  ( Kt  ran  F ) ) ) )
2619, 25mpbid 202 . 2  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  F  e.  ( J  Cn  ( Kt  ran  F ) ) )
27 eqid 2435 . . 3  |-  U. ( Kt  ran  F )  =  U. ( Kt  ran  F )
2827cncmp 17447 . 2  |-  ( ( J  e.  Comp  /\  F : U. J -onto-> U. ( Kt  ran  F )  /\  F  e.  ( J  Cn  ( Kt  ran  F ) ) )  ->  ( Kt  ran  F
)  e.  Comp )
291, 18, 26, 28syl3anc 1184 1  |-  ( ( J  e.  Comp  /\  F  e.  ( J  Cn  K
) )  ->  ( Kt  ran  F )  e.  Comp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    C_ wss 3312   U.cuni 4007   ran crn 4871    Fn wfn 5441   -->wf 5442   -onto->wfo 5444   ` cfv 5446  (class class class)co 6073   ↾t crest 13640   Topctop 16950  TopOnctopon 16951    Cn ccn 17280   Compccmp 17441
This theorem is referenced by:  imacmp  17452  kgencn2  17581  bndth  18975
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-en 7102  df-dom 7103  df-fin 7105  df-fi 7408  df-rest 13642  df-topgen 13659  df-top 16955  df-bases 16957  df-topon 16958  df-cn 17283  df-cmp 17442
  Copyright terms: Public domain W3C validator