MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnco Unicode version

Theorem rnco 5179
Description: The range of the composition of two classes. (Contributed by NM, 12-Dec-2006.)
Assertion
Ref Expression
rnco  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )

Proof of Theorem rnco
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 2791 . . . . . 6  |-  x  e. 
_V
2 vex 2791 . . . . . 6  |-  y  e. 
_V
31, 2brco 4852 . . . . 5  |-  ( x ( A  o.  B
) y  <->  E. z
( x B z  /\  z A y ) )
43exbii 1569 . . . 4  |-  ( E. x  x ( A  o.  B ) y  <->  E. x E. z ( x B z  /\  z A y ) )
5 excom 1786 . . . 4  |-  ( E. x E. z ( x B z  /\  z A y )  <->  E. z E. x ( x B z  /\  z A y ) )
6 ancom 437 . . . . . . 7  |-  ( ( E. x  x B z  /\  z A y )  <->  ( z A y  /\  E. x  x B z ) )
7 19.41v 1842 . . . . . . 7  |-  ( E. x ( x B z  /\  z A y )  <->  ( E. x  x B z  /\  z A y ) )
8 vex 2791 . . . . . . . . 9  |-  z  e. 
_V
98elrn 4919 . . . . . . . 8  |-  ( z  e.  ran  B  <->  E. x  x B z )
109anbi2i 675 . . . . . . 7  |-  ( ( z A y  /\  z  e.  ran  B )  <-> 
( z A y  /\  E. x  x B z ) )
116, 7, 103bitr4i 268 . . . . . 6  |-  ( E. x ( x B z  /\  z A y )  <->  ( z A y  /\  z  e.  ran  B ) )
122brres 4961 . . . . . 6  |-  ( z ( A  |`  ran  B
) y  <->  ( z A y  /\  z  e.  ran  B ) )
1311, 12bitr4i 243 . . . . 5  |-  ( E. x ( x B z  /\  z A y )  <->  z ( A  |`  ran  B ) y )
1413exbii 1569 . . . 4  |-  ( E. z E. x ( x B z  /\  z A y )  <->  E. z 
z ( A  |`  ran  B ) y )
154, 5, 143bitri 262 . . 3  |-  ( E. x  x ( A  o.  B ) y  <->  E. z  z ( A  |`  ran  B ) y )
162elrn 4919 . . 3  |-  ( y  e.  ran  ( A  o.  B )  <->  E. x  x ( A  o.  B ) y )
172elrn 4919 . . 3  |-  ( y  e.  ran  ( A  |`  ran  B )  <->  E. z 
z ( A  |`  ran  B ) y )
1815, 16, 173bitr4i 268 . 2  |-  ( y  e.  ran  ( A  o.  B )  <->  y  e.  ran  ( A  |`  ran  B
) )
1918eqriv 2280 1  |-  ran  ( A  o.  B )  =  ran  ( A  |`  ran  B )
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1528    = wceq 1623    e. wcel 1684   class class class wbr 4023   ran crn 4690    |` cres 4691    o. ccom 4693
This theorem is referenced by:  rnco2  5180  cofunexg  5739  1stcof  6147  2ndcof  6148  smobeth  8208  coeq0  26831
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-xp 4695  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701
  Copyright terms: Public domain W3C validator