MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngdi Structured version   Unicode version

Theorem rngdi 15687
Description: Distributive law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
rngdi.b  |-  B  =  ( Base `  R
)
rngdi.p  |-  .+  =  ( +g  `  R )
rngdi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngdi  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )

Proof of Theorem rngdi
StepHypRef Expression
1 rngdi.b . . 3  |-  B  =  ( Base `  R
)
2 rngdi.p . . 3  |-  .+  =  ( +g  `  R )
3 rngdi.t . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3rngi 15681 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
54simpld 447 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ` cfv 5457  (class class class)co 6084   Basecbs 13474   +g cplusg 13534   .rcmulr 13535   Ringcrg 15665
This theorem is referenced by:  rngcom  15697  rngrz  15706  rngnegr  15709  rngsubdi  15713  rnglghm  15716  prdsrngd  15723  imasrng  15730  opprrng  15741  issubrg2  15893  cntzsubr  15905  sralmod  16263  psrlmod  16470  psrdi  16475  ply1divex  20064  mamudir  27452  lfladdcl  29942  lflvsdi2  29950  dvhlveclem  31979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-nul 4341
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-rab 2716  df-v 2960  df-sbc 3164  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-br 4216  df-iota 5421  df-fv 5465  df-ov 6087  df-rng 15668
  Copyright terms: Public domain W3C validator