MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngdi Structured version   Unicode version

Theorem rngdi 15674
Description: Distributive law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
rngdi.b  |-  B  =  ( Base `  R
)
rngdi.p  |-  .+  =  ( +g  `  R )
rngdi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngdi  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )

Proof of Theorem rngdi
StepHypRef Expression
1 rngdi.b . . 3  |-  B  =  ( Base `  R
)
2 rngdi.p . . 3  |-  .+  =  ( +g  `  R )
3 rngdi.t . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3rngi 15668 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
54simpld 446 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( X  .x.  ( Y  .+  Z
) )  =  ( ( X  .x.  Y
)  .+  ( X  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5446  (class class class)co 6073   Basecbs 13461   +g cplusg 13521   .rcmulr 13522   Ringcrg 15652
This theorem is referenced by:  rngcom  15684  rngrz  15693  rngnegr  15696  rngsubdi  15700  rnglghm  15703  prdsrngd  15710  imasrng  15717  opprrng  15728  issubrg2  15880  cntzsubr  15892  sralmod  16250  psrlmod  16457  psrdi  16462  ply1divex  20051  mamudir  27430  lfladdcl  29806  lflvsdi2  29814  dvhlveclem  31843
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-nul 4330
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-iota 5410  df-fv 5454  df-ov 6076  df-rng 15655
  Copyright terms: Public domain W3C validator