MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngdir Unicode version

Theorem rngdir 15570
Description: Distributive law for the multiplication operation of a ring. (Contributed by Steve Rodriguez, 9-Sep-2007.)
Hypotheses
Ref Expression
rngdi.b  |-  B  =  ( Base `  R
)
rngdi.p  |-  .+  =  ( +g  `  R )
rngdi.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
rngdir  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )

Proof of Theorem rngdir
StepHypRef Expression
1 rngdi.b . . 3  |-  B  =  ( Base `  R
)
2 rngdi.p . . 3  |-  .+  =  ( +g  `  R )
3 rngdi.t . . 3  |-  .x.  =  ( .r `  R )
41, 2, 3rngi 15563 . 2  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .x.  ( Y  .+  Z ) )  =  ( ( X  .x.  Y )  .+  ( X  .x.  Z ) )  /\  ( ( X 
.+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) ) )
54simprd 449 1  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Z  e.  B )
)  ->  ( ( X  .+  Y )  .x.  Z )  =  ( ( X  .x.  Z
)  .+  ( Y  .x.  Z ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 935    = wceq 1647    e. wcel 1715   ` cfv 5358  (class class class)co 5981   Basecbs 13356   +g cplusg 13416   .rcmulr 13417   Ringcrg 15547
This theorem is referenced by:  rngcom  15579  rnglz  15587  rngnegl  15590  rngsubdir  15596  mulgass2  15597  rngrghm  15599  prdsrngd  15605  imasrng  15612  opprrng  15623  issubrg2  15775  cntzsubr  15787  sralmod  16149  psrlmod  16356  psrdir  16362  evlslem1  19614  dvrdir  23738  mamudi  27052  lflvscl  29326  lflvsdi1  29327  dvhlveclem  31357
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-nul 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-rab 2637  df-v 2875  df-sbc 3078  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-nul 3544  df-if 3655  df-sn 3735  df-pr 3736  df-op 3738  df-uni 3930  df-br 4126  df-iota 5322  df-fv 5366  df-ov 5984  df-rng 15550
  Copyright terms: Public domain W3C validator