MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngidpropd Unicode version

Theorem rngidpropd 15763
Description: The ring identity depends only on the ring's base set and multiplication operation. (Contributed by Mario Carneiro, 26-Dec-2014.)
Hypotheses
Ref Expression
rngidpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngidpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngidpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
rngidpropd  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Distinct variable groups:    x, y, B    x, K, y    x, L, y    ph, x, y

Proof of Theorem rngidpropd
StepHypRef Expression
1 rngidpropd.1 . . . 4  |-  ( ph  ->  B  =  ( Base `  K ) )
2 eqid 2412 . . . . 5  |-  (mulGrp `  K )  =  (mulGrp `  K )
3 eqid 2412 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
42, 3mgpbas 15617 . . . 4  |-  ( Base `  K )  =  (
Base `  (mulGrp `  K
) )
51, 4syl6eq 2460 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  K )
) )
6 rngidpropd.2 . . . 4  |-  ( ph  ->  B  =  ( Base `  L ) )
7 eqid 2412 . . . . 5  |-  (mulGrp `  L )  =  (mulGrp `  L )
8 eqid 2412 . . . . 5  |-  ( Base `  L )  =  (
Base `  L )
97, 8mgpbas 15617 . . . 4  |-  ( Base `  L )  =  (
Base `  (mulGrp `  L
) )
106, 9syl6eq 2460 . . 3  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
11 rngidpropd.3 . . . 4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
12 eqid 2412 . . . . . 6  |-  ( .r
`  K )  =  ( .r `  K
)
132, 12mgpplusg 15615 . . . . 5  |-  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) )
1413oveqi 6061 . . . 4  |-  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y )
15 eqid 2412 . . . . . 6  |-  ( .r
`  L )  =  ( .r `  L
)
167, 15mgpplusg 15615 . . . . 5  |-  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) )
1716oveqi 6061 . . . 4  |-  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y )
1811, 14, 173eqtr3g 2467 . . 3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
195, 10, 18grpidpropd 14685 . 2  |-  ( ph  ->  ( 0g `  (mulGrp `  K ) )  =  ( 0g `  (mulGrp `  L ) ) )
20 eqid 2412 . . 3  |-  ( 1r
`  K )  =  ( 1r `  K
)
212, 20rngidval 15629 . 2  |-  ( 1r
`  K )  =  ( 0g `  (mulGrp `  K ) )
22 eqid 2412 . . 3  |-  ( 1r
`  L )  =  ( 1r `  L
)
237, 22rngidval 15629 . 2  |-  ( 1r
`  L )  =  ( 0g `  (mulGrp `  L ) )
2419, 21, 233eqtr4g 2469 1  |-  ( ph  ->  ( 1r `  K
)  =  ( 1r
`  L ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    = wceq 1649    e. wcel 1721   ` cfv 5421  (class class class)co 6048   Basecbs 13432   +g cplusg 13492   .rcmulr 13493   0gc0g 13686  mulGrpcmgp 15611   1rcur 15625
This theorem is referenced by:  unitpropd  15765  subrgpropd  15865  lmodprop2d  15969  opsr1  16576  ply1mpl1  16613  zlm1  24308  hlhils1N  32444
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2393  ax-sep 4298  ax-nul 4306  ax-pow 4345  ax-pr 4371  ax-un 4668  ax-cnex 9010  ax-resscn 9011  ax-1cn 9012  ax-icn 9013  ax-addcl 9014  ax-addrcl 9015  ax-mulcl 9016  ax-mulrcl 9017  ax-mulcom 9018  ax-addass 9019  ax-mulass 9020  ax-distr 9021  ax-i2m1 9022  ax-1ne0 9023  ax-1rid 9024  ax-rnegex 9025  ax-rrecex 9026  ax-cnre 9027  ax-pre-lttri 9028  ax-pre-lttrn 9029  ax-pre-ltadd 9030  ax-pre-mulgt0 9031
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2266  df-mo 2267  df-clab 2399  df-cleq 2405  df-clel 2408  df-nfc 2537  df-ne 2577  df-nel 2578  df-ral 2679  df-rex 2680  df-reu 2681  df-rab 2683  df-v 2926  df-sbc 3130  df-csb 3220  df-dif 3291  df-un 3293  df-in 3295  df-ss 3302  df-pss 3304  df-nul 3597  df-if 3708  df-pw 3769  df-sn 3788  df-pr 3789  df-tp 3790  df-op 3791  df-uni 3984  df-iun 4063  df-br 4181  df-opab 4235  df-mpt 4236  df-tr 4271  df-eprel 4462  df-id 4466  df-po 4471  df-so 4472  df-fr 4509  df-we 4511  df-ord 4552  df-on 4553  df-lim 4554  df-suc 4555  df-om 4813  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5385  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6051  df-oprab 6052  df-mpt2 6053  df-riota 6516  df-recs 6600  df-rdg 6635  df-er 6872  df-en 7077  df-dom 7078  df-sdom 7079  df-pnf 9086  df-mnf 9087  df-xr 9088  df-ltxr 9089  df-le 9090  df-sub 9257  df-neg 9258  df-nn 9965  df-2 10022  df-ndx 13435  df-slot 13436  df-base 13437  df-sets 13438  df-plusg 13505  df-0g 13690  df-mgp 15612  df-ur 15628
  Copyright terms: Public domain W3C validator