MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnglz Structured version   Unicode version

Theorem rnglz 15700
Description: The zero of a unital ring is a left absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b  |-  B  =  ( Base `  R
)
rngz.t  |-  .x.  =  ( .r `  R )
rngz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rnglz  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )

Proof of Theorem rnglz
StepHypRef Expression
1 rnggrp 15669 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 rngz.b . . . . . . . 8  |-  B  =  ( Base `  R
)
3 rngz.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 14833 . . . . . . 7  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2436 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 14835 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
74, 6mpdan 650 . . . . . 6  |-  ( R  e.  Grp  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
81, 7syl 16 . . . . 5  |-  ( R  e.  Ring  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98adantr 452 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
109oveq1d 6096 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  (  .0.  .x.  X )
)
111, 4syl 16 . . . . . 6  |-  ( R  e.  Ring  ->  .0.  e.  B )
1211adantr 452 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .0.  e.  B )
13 simpr 448 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
1412, 12, 133jca 1134 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )
15 rngz.t . . . . 5  |-  .x.  =  ( .r `  R )
162, 5, 15rngdir 15683 . . . 4  |-  ( ( R  e.  Ring  /\  (  .0.  e.  B  /\  .0.  e.  B  /\  X  e.  B ) )  -> 
( (  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) ) )
1714, 16syldan 457 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .0.  ( +g  `  R )  .0.  )  .x.  X )  =  ( (  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) ) )
181adantr 452 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
19 simpl 444 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Ring )
202, 15rngcl 15677 . . . . 5  |-  ( ( R  e.  Ring  /\  .0.  e.  B  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
2119, 12, 13, 20syl3anc 1184 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .x.  X )  e.  B )
222, 5, 3grprid 14836 . . . . 5  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
)  .0.  )  =  (  .0.  .x.  X
) )
2322eqcomd 2441 . . . 4  |-  ( ( R  e.  Grp  /\  (  .0.  .x.  X )  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2418, 21, 23syl2anc 643 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
2510, 17, 243eqtr3d 2476 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
(  .0.  .x.  X
) ( +g  `  R
) (  .0.  .x.  X ) )  =  ( (  .0.  .x.  X ) ( +g  `  R )  .0.  )
)
262, 5grplcan 14857 . . 3  |-  ( ( R  e.  Grp  /\  ( (  .0.  .x.  X )  e.  B  /\  .0.  e.  B  /\  (  .0.  .x.  X )  e.  B ) )  -> 
( ( (  .0. 
.x.  X ) ( +g  `  R ) (  .0.  .x.  X
) )  =  ( (  .0.  .x.  X
) ( +g  `  R
)  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
2718, 21, 12, 21, 26syl13anc 1186 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( (  .0.  .x.  X ) ( +g  `  R ) (  .0. 
.x.  X ) )  =  ( (  .0. 
.x.  X ) ( +g  `  R )  .0.  )  <->  (  .0.  .x. 
X )  =  .0.  ) )
2825, 27mpbid 202 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  .x.  X )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725   ` cfv 5454  (class class class)co 6081   Basecbs 13469   +g cplusg 13529   .rcmulr 13530   0gc0g 13723   Grpcgrp 14685   Ringcrg 15660
This theorem is referenced by:  rng1eq0  15702  rngnegl  15703  mulgass2  15710  gsumdixp  15715  dvdsr01  15760  0unit  15785  irredn0  15808  drngmul0or  15856  cntzsubr  15900  isabvd  15908  domneq0  16357  psrlidm  16467  mplsubrglem  16502  mplmonmul  16527  evlslem4  16564  coe1tmmul  16669  evlslem6  19934  evlslem3  19935  mdegmullem  20001  coe1mul3  20022  fta1glem1  20088  mamulid  27435  cntzsdrg  27487  lflsc0N  29881  hdmapinvlem3  32721  hdmapinvlem4  32722
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-rep 4320  ax-sep 4330  ax-nul 4338  ax-pow 4377  ax-pr 4403  ax-un 4701  ax-cnex 9046  ax-resscn 9047  ax-1cn 9048  ax-icn 9049  ax-addcl 9050  ax-addrcl 9051  ax-mulcl 9052  ax-mulrcl 9053  ax-mulcom 9054  ax-addass 9055  ax-mulass 9056  ax-distr 9057  ax-i2m1 9058  ax-1ne0 9059  ax-1rid 9060  ax-rnegex 9061  ax-rrecex 9062  ax-cnre 9063  ax-pre-lttri 9064  ax-pre-lttrn 9065  ax-pre-ltadd 9066  ax-pre-mulgt0 9067
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-nel 2602  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2958  df-sbc 3162  df-csb 3252  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-pss 3336  df-nul 3629  df-if 3740  df-pw 3801  df-sn 3820  df-pr 3821  df-tp 3822  df-op 3823  df-uni 4016  df-iun 4095  df-br 4213  df-opab 4267  df-mpt 4268  df-tr 4303  df-eprel 4494  df-id 4498  df-po 4503  df-so 4504  df-fr 4541  df-we 4543  df-ord 4584  df-on 4585  df-lim 4586  df-suc 4587  df-om 4846  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-res 4890  df-ima 4891  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-riota 6549  df-recs 6633  df-rdg 6668  df-er 6905  df-en 7110  df-dom 7111  df-sdom 7112  df-pnf 9122  df-mnf 9123  df-xr 9124  df-ltxr 9125  df-le 9126  df-sub 9293  df-neg 9294  df-nn 10001  df-2 10058  df-ndx 13472  df-slot 13473  df-base 13474  df-sets 13475  df-plusg 13542  df-0g 13727  df-mnd 14690  df-grp 14812  df-minusg 14813  df-mgp 15649  df-rng 15663
  Copyright terms: Public domain W3C validator