MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngnegl Unicode version

Theorem rngnegl 15623
Description: Negation in a ring is the same as left multiplication by -1. (rngonegmn1l 26249 analog.) (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.)
Hypotheses
Ref Expression
rngnegl.b  |-  B  =  ( Base `  R
)
rngnegl.t  |-  .x.  =  ( .r `  R )
rngnegl.u  |-  .1.  =  ( 1r `  R )
rngnegl.n  |-  N  =  ( inv g `  R )
rngnegl.r  |-  ( ph  ->  R  e.  Ring )
rngnegl.x  |-  ( ph  ->  X  e.  B )
Assertion
Ref Expression
rngnegl  |-  ( ph  ->  ( ( N `  .1.  )  .x.  X )  =  ( N `  X ) )

Proof of Theorem rngnegl
StepHypRef Expression
1 rngnegl.r . . . . 5  |-  ( ph  ->  R  e.  Ring )
2 rngnegl.b . . . . . . 7  |-  B  =  ( Base `  R
)
3 rngnegl.u . . . . . . 7  |-  .1.  =  ( 1r `  R )
42, 3rngidcl 15604 . . . . . 6  |-  ( R  e.  Ring  ->  .1.  e.  B )
51, 4syl 16 . . . . 5  |-  ( ph  ->  .1.  e.  B )
6 rnggrp 15589 . . . . . . 7  |-  ( R  e.  Ring  ->  R  e. 
Grp )
71, 6syl 16 . . . . . 6  |-  ( ph  ->  R  e.  Grp )
8 rngnegl.n . . . . . . 7  |-  N  =  ( inv g `  R )
92, 8grpinvcl 14770 . . . . . 6  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
( N `  .1.  )  e.  B )
107, 5, 9syl2anc 643 . . . . 5  |-  ( ph  ->  ( N `  .1.  )  e.  B )
11 rngnegl.x . . . . 5  |-  ( ph  ->  X  e.  B )
12 eqid 2380 . . . . . 6  |-  ( +g  `  R )  =  ( +g  `  R )
13 rngnegl.t . . . . . 6  |-  .x.  =  ( .r `  R )
142, 12, 13rngdir 15603 . . . . 5  |-  ( ( R  e.  Ring  /\  (  .1.  e.  B  /\  ( N `  .1.  )  e.  B  /\  X  e.  B ) )  -> 
( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( (  .1. 
.x.  X ) ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) ) )
151, 5, 10, 11, 14syl13anc 1186 . . . 4  |-  ( ph  ->  ( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( (  .1. 
.x.  X ) ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) ) )
16 eqid 2380 . . . . . . . 8  |-  ( 0g
`  R )  =  ( 0g `  R
)
172, 12, 16, 8grprinv 14772 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .1.  e.  B )  -> 
(  .1.  ( +g  `  R ) ( N `
 .1.  ) )  =  ( 0g `  R ) )
187, 5, 17syl2anc 643 . . . . . 6  |-  ( ph  ->  (  .1.  ( +g  `  R ) ( N `
 .1.  ) )  =  ( 0g `  R ) )
1918oveq1d 6028 . . . . 5  |-  ( ph  ->  ( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( ( 0g
`  R )  .x.  X ) )
202, 13, 16rnglz 15620 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( 0g `  R
)  .x.  X )  =  ( 0g `  R ) )
211, 11, 20syl2anc 643 . . . . 5  |-  ( ph  ->  ( ( 0g `  R )  .x.  X
)  =  ( 0g
`  R ) )
2219, 21eqtrd 2412 . . . 4  |-  ( ph  ->  ( (  .1.  ( +g  `  R ) ( N `  .1.  )
)  .x.  X )  =  ( 0g `  R ) )
232, 13, 3rnglidm 15607 . . . . . 6  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .1.  .x.  X )  =  X )
241, 11, 23syl2anc 643 . . . . 5  |-  ( ph  ->  (  .1.  .x.  X
)  =  X )
2524oveq1d 6028 . . . 4  |-  ( ph  ->  ( (  .1.  .x.  X ) ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( X ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) ) )
2615, 22, 253eqtr3rd 2421 . . 3  |-  ( ph  ->  ( X ( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( 0g `  R
) )
272, 13rngcl 15597 . . . . 5  |-  ( ( R  e.  Ring  /\  ( N `  .1.  )  e.  B  /\  X  e.  B )  ->  (
( N `  .1.  )  .x.  X )  e.  B )
281, 10, 11, 27syl3anc 1184 . . . 4  |-  ( ph  ->  ( ( N `  .1.  )  .x.  X )  e.  B )
292, 12, 16, 8grpinvid1 14773 . . . 4  |-  ( ( R  e.  Grp  /\  X  e.  B  /\  ( ( N `  .1.  )  .x.  X )  e.  B )  -> 
( ( N `  X )  =  ( ( N `  .1.  )  .x.  X )  <->  ( X
( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( 0g
`  R ) ) )
307, 11, 28, 29syl3anc 1184 . . 3  |-  ( ph  ->  ( ( N `  X )  =  ( ( N `  .1.  )  .x.  X )  <->  ( X
( +g  `  R ) ( ( N `  .1.  )  .x.  X ) )  =  ( 0g
`  R ) ) )
3126, 30mpbird 224 . 2  |-  ( ph  ->  ( N `  X
)  =  ( ( N `  .1.  )  .x.  X ) )
3231eqcomd 2385 1  |-  ( ph  ->  ( ( N `  .1.  )  .x.  X )  =  ( N `  X ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    = wceq 1649    e. wcel 1717   ` cfv 5387  (class class class)co 6013   Basecbs 13389   +g cplusg 13449   .rcmulr 13450   0gc0g 13643   Grpcgrp 14605   inv gcminusg 14606   Ringcrg 15580   1rcur 15582
This theorem is referenced by:  rngmneg1  15625  dvdsrneg  15679  abvneg  15842  lmodvsneg  15908  lmodsubvs  15920  lmodsubdi  15921  lmodsubdir  15922  lmodvsinv  16032  mplind  16482  lflsub  29233  baerlem3lem1  31873
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2361  ax-rep 4254  ax-sep 4264  ax-nul 4272  ax-pow 4311  ax-pr 4337  ax-un 4634  ax-cnex 8972  ax-resscn 8973  ax-1cn 8974  ax-icn 8975  ax-addcl 8976  ax-addrcl 8977  ax-mulcl 8978  ax-mulrcl 8979  ax-mulcom 8980  ax-addass 8981  ax-mulass 8982  ax-distr 8983  ax-i2m1 8984  ax-1ne0 8985  ax-1rid 8986  ax-rnegex 8987  ax-rrecex 8988  ax-cnre 8989  ax-pre-lttri 8990  ax-pre-lttrn 8991  ax-pre-ltadd 8992  ax-pre-mulgt0 8993
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2235  df-mo 2236  df-clab 2367  df-cleq 2373  df-clel 2376  df-nfc 2505  df-ne 2545  df-nel 2546  df-ral 2647  df-rex 2648  df-reu 2649  df-rmo 2650  df-rab 2651  df-v 2894  df-sbc 3098  df-csb 3188  df-dif 3259  df-un 3261  df-in 3263  df-ss 3270  df-pss 3272  df-nul 3565  df-if 3676  df-pw 3737  df-sn 3756  df-pr 3757  df-tp 3758  df-op 3759  df-uni 3951  df-iun 4030  df-br 4147  df-opab 4201  df-mpt 4202  df-tr 4237  df-eprel 4428  df-id 4432  df-po 4437  df-so 4438  df-fr 4475  df-we 4477  df-ord 4518  df-on 4519  df-lim 4520  df-suc 4521  df-om 4779  df-xp 4817  df-rel 4818  df-cnv 4819  df-co 4820  df-dm 4821  df-rn 4822  df-res 4823  df-ima 4824  df-iota 5351  df-fun 5389  df-fn 5390  df-f 5391  df-f1 5392  df-fo 5393  df-f1o 5394  df-fv 5395  df-ov 6016  df-oprab 6017  df-mpt2 6018  df-riota 6478  df-recs 6562  df-rdg 6597  df-er 6834  df-en 7039  df-dom 7040  df-sdom 7041  df-pnf 9048  df-mnf 9049  df-xr 9050  df-ltxr 9051  df-le 9052  df-sub 9218  df-neg 9219  df-nn 9926  df-2 9983  df-ndx 13392  df-slot 13393  df-base 13394  df-sets 13395  df-plusg 13462  df-0g 13647  df-mnd 14610  df-grp 14732  df-minusg 14733  df-mgp 15569  df-rng 15583  df-ur 15585
  Copyright terms: Public domain W3C validator