MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngo1cl Unicode version

Theorem rngo1cl 21149
Description: The unit of a ring belongs to the base set. (Contributed by FL, 12-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
ring1cl.1  |-  X  =  ran  ( 1st `  R
)
ring1cl.2  |-  H  =  ( 2nd `  R
)
ring1cl.3  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngo1cl  |-  ( R  e.  RingOps  ->  U  e.  X
)

Proof of Theorem rngo1cl
StepHypRef Expression
1 ring1cl.2 . . . . . 6  |-  H  =  ( 2nd `  R
)
21rngomndo 21141 . . . . 5  |-  ( R  e.  RingOps  ->  H  e. MndOp )
31eleq1i 2379 . . . . . 6  |-  ( H  e. MndOp 
<->  ( 2nd `  R
)  e. MndOp )
4 mndoismgm 21061 . . . . . . 7  |-  ( ( 2nd `  R )  e. MndOp  ->  ( 2nd `  R
)  e.  Magma )
5 mndoisexid 21060 . . . . . . 7  |-  ( ( 2nd `  R )  e. MndOp  ->  ( 2nd `  R
)  e.  ExId  )
64, 5jca 518 . . . . . 6  |-  ( ( 2nd `  R )  e. MndOp  ->  ( ( 2nd `  R )  e.  Magma  /\  ( 2nd `  R
)  e.  ExId  )
)
73, 6sylbi 187 . . . . 5  |-  ( H  e. MndOp  ->  ( ( 2nd `  R )  e.  Magma  /\  ( 2nd `  R
)  e.  ExId  )
)
82, 7syl 15 . . . 4  |-  ( R  e.  RingOps  ->  ( ( 2nd `  R )  e.  Magma  /\  ( 2nd `  R
)  e.  ExId  )
)
9 elin 3392 . . . 4  |-  ( ( 2nd `  R )  e.  ( Magma  i^i  ExId  )  <-> 
( ( 2nd `  R
)  e.  Magma  /\  ( 2nd `  R )  e. 
ExId  ) )
108, 9sylibr 203 . . 3  |-  ( R  e.  RingOps  ->  ( 2nd `  R
)  e.  ( Magma  i^i 
ExId  ) )
11 eqid 2316 . . . 4  |-  ran  ( 2nd `  R )  =  ran  ( 2nd `  R
)
12 ring1cl.3 . . . . 5  |-  U  =  (GId `  H )
131fveq2i 5566 . . . . 5  |-  (GId `  H )  =  (GId
`  ( 2nd `  R
) )
1412, 13eqtri 2336 . . . 4  |-  U  =  (GId `  ( 2nd `  R ) )
1511, 14iorlid 21048 . . 3  |-  ( ( 2nd `  R )  e.  ( Magma  i^i  ExId  )  ->  U  e.  ran  ( 2nd `  R ) )
1610, 15syl 15 . 2  |-  ( R  e.  RingOps  ->  U  e.  ran  ( 2nd `  R ) )
17 ring1cl.1 . . 3  |-  X  =  ran  ( 1st `  R
)
18 eqid 2316 . . . 4  |-  ( 2nd `  R )  =  ( 2nd `  R )
19 eqid 2316 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2018, 19rngorn1eq 21140 . . 3  |-  ( R  e.  RingOps  ->  ran  ( 1st `  R )  =  ran  ( 2nd `  R ) )
21 eqtr 2333 . . . 4  |-  ( ( X  =  ran  ( 1st `  R )  /\  ran  ( 1st `  R
)  =  ran  ( 2nd `  R ) )  ->  X  =  ran  ( 2nd `  R ) )
2221eleq2d 2383 . . 3  |-  ( ( X  =  ran  ( 1st `  R )  /\  ran  ( 1st `  R
)  =  ran  ( 2nd `  R ) )  ->  ( U  e.  X  <->  U  e.  ran  ( 2nd `  R ) ) )
2317, 20, 22sylancr 644 . 2  |-  ( R  e.  RingOps  ->  ( U  e.  X  <->  U  e.  ran  ( 2nd `  R ) ) )
2416, 23mpbird 223 1  |-  ( R  e.  RingOps  ->  U  e.  X
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1633    e. wcel 1701    i^i cin 3185   ran crn 4727   ` cfv 5292   1stc1st 6162   2ndc2nd 6163  GIdcgi 20907    ExId cexid 21034   Magmacmagm 21038  MndOpcmndo 21057   RingOpscrngo 21095
This theorem is referenced by:  rngoueqz  21150  rngonegmn1l  25728  rngonegmn1r  25729  rngoneglmul  25730  rngonegrmul  25731  isdrngo2  25737  rngohomco  25753  rngoisocnv  25760  idlnegcl  25795  1idl  25799  0rngo  25800  smprngopr  25825  prnc  25840  isfldidl  25841  isdmn3  25847
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-13 1703  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pow 4225  ax-pr 4251  ax-un 4549
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-ral 2582  df-rex 2583  df-reu 2584  df-rmo 2585  df-rab 2586  df-v 2824  df-sbc 3026  df-csb 3116  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-uni 3865  df-iun 3944  df-br 4061  df-opab 4115  df-mpt 4116  df-id 4346  df-xp 4732  df-rel 4733  df-cnv 4734  df-co 4735  df-dm 4736  df-rn 4737  df-iota 5256  df-fun 5294  df-fn 5295  df-f 5296  df-fo 5298  df-fv 5300  df-ov 5903  df-1st 6164  df-2nd 6165  df-riota 6346  df-grpo 20911  df-gid 20912  df-ablo 21002  df-ass 21033  df-exid 21035  df-mgm 21039  df-sgr 21051  df-mndo 21058  df-rngo 21096
  Copyright terms: Public domain W3C validator