Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngohommul Unicode version

Theorem rngohommul 26704
Description: Ring homomorphisms preserve multiplication. (Contributed by Jeff Madsen, 3-Jan-2011.)
Hypotheses
Ref Expression
rnghommul.1  |-  G  =  ( 1st `  R
)
rnghommul.2  |-  X  =  ran  G
rnghommul.3  |-  H  =  ( 2nd `  R
)
rnghommul.4  |-  K  =  ( 2nd `  S
)
Assertion
Ref Expression
rngohommul  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A H B ) )  =  ( ( F `
 A ) K ( F `  B
) ) )

Proof of Theorem rngohommul
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnghommul.1 . . . . . . 7  |-  G  =  ( 1st `  R
)
2 rnghommul.3 . . . . . . 7  |-  H  =  ( 2nd `  R
)
3 rnghommul.2 . . . . . . 7  |-  X  =  ran  G
4 eqid 2296 . . . . . . 7  |-  (GId `  H )  =  (GId
`  H )
5 eqid 2296 . . . . . . 7  |-  ( 1st `  S )  =  ( 1st `  S )
6 rnghommul.4 . . . . . . 7  |-  K  =  ( 2nd `  S
)
7 eqid 2296 . . . . . . 7  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
8 eqid 2296 . . . . . . 7  |-  (GId `  K )  =  (GId
`  K )
91, 2, 3, 4, 5, 6, 7, 8isrngohom 26699 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngHom  S )  <->  ( F : X --> ran  ( 1st `  S )  /\  ( F `  (GId `  H
) )  =  (GId
`  K )  /\  A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) ) )
109biimpa 470 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  -> 
( F : X --> ran  ( 1st `  S
)  /\  ( F `  (GId `  H )
)  =  (GId `  K )  /\  A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) ) )
1110simp3d 969 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `  x
) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) )
12113impa 1146 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  X  A. y  e.  X  ( ( F `  ( x G y ) )  =  ( ( F `
 x ) ( 1st `  S ) ( F `  y
) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) ) )
13 simpr 447 . . . . 5  |-  ( ( ( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )  -> 
( F `  (
x H y ) )  =  ( ( F `  x ) K ( F `  y ) ) )
1413ralimi 2631 . . . 4  |-  ( A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )  ->  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )
1514ralimi 2631 . . 3  |-  ( A. x  e.  X  A. y  e.  X  (
( F `  (
x G y ) )  =  ( ( F `  x ) ( 1st `  S
) ( F `  y ) )  /\  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `
 x ) K ( F `  y
) ) )
1612, 15syl 15 . 2  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  ->  A. x  e.  X  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `  x
) K ( F `
 y ) ) )
17 oveq1 5881 . . . . 5  |-  ( x  =  A  ->  (
x H y )  =  ( A H y ) )
1817fveq2d 5545 . . . 4  |-  ( x  =  A  ->  ( F `  ( x H y ) )  =  ( F `  ( A H y ) ) )
19 fveq2 5541 . . . . 5  |-  ( x  =  A  ->  ( F `  x )  =  ( F `  A ) )
2019oveq1d 5889 . . . 4  |-  ( x  =  A  ->  (
( F `  x
) K ( F `
 y ) )  =  ( ( F `
 A ) K ( F `  y
) ) )
2118, 20eqeq12d 2310 . . 3  |-  ( x  =  A  ->  (
( F `  (
x H y ) )  =  ( ( F `  x ) K ( F `  y ) )  <->  ( F `  ( A H y ) )  =  ( ( F `  A
) K ( F `
 y ) ) ) )
22 oveq2 5882 . . . . 5  |-  ( y  =  B  ->  ( A H y )  =  ( A H B ) )
2322fveq2d 5545 . . . 4  |-  ( y  =  B  ->  ( F `  ( A H y ) )  =  ( F `  ( A H B ) ) )
24 fveq2 5541 . . . . 5  |-  ( y  =  B  ->  ( F `  y )  =  ( F `  B ) )
2524oveq2d 5890 . . . 4  |-  ( y  =  B  ->  (
( F `  A
) K ( F `
 y ) )  =  ( ( F `
 A ) K ( F `  B
) ) )
2623, 25eqeq12d 2310 . . 3  |-  ( y  =  B  ->  (
( F `  ( A H y ) )  =  ( ( F `
 A ) K ( F `  y
) )  <->  ( F `  ( A H B ) )  =  ( ( F `  A
) K ( F `
 B ) ) ) )
2721, 26rspc2v 2903 . 2  |-  ( ( A  e.  X  /\  B  e.  X )  ->  ( A. x  e.  X  A. y  e.  X  ( F `  ( x H y ) )  =  ( ( F `  x
) K ( F `
 y ) )  ->  ( F `  ( A H B ) )  =  ( ( F `  A ) K ( F `  B ) ) ) )
2816, 27mpan9 455 1  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngHom  S ) )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( F `  ( A H B ) )  =  ( ( F `
 A ) K ( F `  B
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   ran crn 4706   -->wf 5267   ` cfv 5271  (class class class)co 5874   1stc1st 6136   2ndc2nd 6137  GIdcgi 20870   RingOpscrngo 21058    RngHom crnghom 26694
This theorem is referenced by:  rngohomco  26708  rngoisocnv  26715  crngohomfo  26734  keridl  26760
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-sbc 3005  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-opab 4094  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-map 6790  df-rngohom 26697
  Copyright terms: Public domain W3C validator