Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoco Unicode version

Theorem rngoisoco 26290
Description: The composition of two ring isomorphisms is a ring isomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisoco  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngIso  T ) )

Proof of Theorem rngoisoco
StepHypRef Expression
1 rngoisohom 26288 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
213expa 1153 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
323adantl3 1115 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
4 rngoisohom 26288 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
543expa 1153 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
653adantl1 1113 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G  e.  ( S  RngHom  T ) )
73, 6anim12da 26104 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )
8 rngohomco 26282 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngHom  S )  /\  G  e.  ( S  RngHom  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
97, 8syldan 457 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngHom  T ) )
10 eqid 2388 . . . . . . 7  |-  ( 1st `  S )  =  ( 1st `  S )
11 eqid 2388 . . . . . . 7  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
12 eqid 2388 . . . . . . 7  |-  ( 1st `  T )  =  ( 1st `  T )
13 eqid 2388 . . . . . . 7  |-  ran  ( 1st `  T )  =  ran  ( 1st `  T
)
1410, 11, 12, 13rngoiso1o 26287 . . . . . 6  |-  ( ( S  e.  RingOps  /\  T  e.  RingOps  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
15143expa 1153 . . . . 5  |-  ( ( ( S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S ) -1-1-onto-> ran  ( 1st `  T
) )
16153adantl1 1113 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  G  e.  ( S  RngIso  T ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
1716adantrl 697 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  G : ran  ( 1st `  S
)
-1-1-onto-> ran  ( 1st `  T
) )
18 eqid 2388 . . . . . . 7  |-  ( 1st `  R )  =  ( 1st `  R )
19 eqid 2388 . . . . . . 7  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
2018, 19, 10, 11rngoiso1o 26287 . . . . . 6  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
21203expa 1153 . . . . 5  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) )
22213adantl3 1115 . . . 4  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
2322adantrr 698 . . 3  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  F : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  S
) )
24 f1oco 5639 . . 3  |-  ( ( G : ran  ( 1st `  S ) -1-1-onto-> ran  ( 1st `  T )  /\  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) )  ->  ( G  o.  F ) : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  T
) )
2517, 23, 24syl2anc 643 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F ) : ran  ( 1st `  R
)
-1-1-onto-> ran  ( 1st `  T
) )
2618, 19, 12, 13isrngoiso 26286 . . . 4  |-  ( ( R  e.  RingOps  /\  T  e.  RingOps )  ->  (
( G  o.  F
)  e.  ( R 
RngIso  T )  <->  ( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F ) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T
) ) ) )
27263adant2 976 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  ->  ( ( G  o.  F )  e.  ( R  RngIso  T )  <-> 
( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F
) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T ) ) ) )
2827adantr 452 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  (
( G  o.  F
)  e.  ( R 
RngIso  T )  <->  ( ( G  o.  F )  e.  ( R  RngHom  T )  /\  ( G  o.  F ) : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  T
) ) ) )
299, 25, 28mpbir2and 889 1  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  T  e.  RingOps )  /\  ( F  e.  ( R  RngIso  S )  /\  G  e.  ( S  RngIso  T ) ) )  ->  ( G  o.  F )  e.  ( R  RngIso  T ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    e. wcel 1717   ran crn 4820    o. ccom 4823   -1-1-onto->wf1o 5394   ` cfv 5395  (class class class)co 6021   1stc1st 6287   RingOpscrngo 21812    RngHom crnghom 26268    RngIso crngiso 26269
This theorem is referenced by:  riscer  26296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rmo 2658  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-iun 4038  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-ov 6024  df-oprab 6025  df-mpt2 6026  df-1st 6289  df-2nd 6290  df-riota 6486  df-map 6957  df-grpo 21628  df-gid 21629  df-ablo 21719  df-ass 21750  df-exid 21752  df-mgm 21756  df-sgr 21768  df-mndo 21775  df-rngo 21813  df-rngohom 26271  df-rngoiso 26284
  Copyright terms: Public domain W3C validator