Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisohom Structured version   Unicode version

Theorem rngoisohom 26596
Description: A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisohom  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )

Proof of Theorem rngoisohom
StepHypRef Expression
1 eqid 2436 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2 eqid 2436 . . . 4  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
3 eqid 2436 . . . 4  |-  ( 1st `  S )  =  ( 1st `  S )
4 eqid 2436 . . . 4  |-  ran  ( 1st `  S )  =  ran  ( 1st `  S
)
51, 2, 3, 4isrngoiso 26594 . . 3  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( F  e.  ( R  RngIso  S )  <->  ( F  e.  ( R  RngHom  S )  /\  F : ran  ( 1st `  R ) -1-1-onto-> ran  ( 1st `  S
) ) ) )
65simprbda 607 . 2  |-  ( ( ( R  e.  RingOps  /\  S  e.  RingOps )  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
763impa 1148 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps  /\  F  e.  ( R  RngIso  S ) )  ->  F  e.  ( R  RngHom  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    e. wcel 1725   ran crn 4879   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   1stc1st 6347   RingOpscrngo 21963    RngHom crnghom 26576    RngIso crngiso 26577
This theorem is referenced by:  rngoisoco  26598
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-rngoiso 26592
  Copyright terms: Public domain W3C validator