Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisoval Structured version   Unicode version

Theorem rngoisoval 26593
Description: The set of ring isomorphisms. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1  |-  G  =  ( 1st `  R
)
rngisoval.2  |-  X  =  ran  G
rngisoval.3  |-  J  =  ( 1st `  S
)
rngisoval.4  |-  Y  =  ran  J
Assertion
Ref Expression
rngoisoval  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  RngIso  S )  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }
)
Distinct variable groups:    R, f    S, f    f, X    f, Y
Allowed substitution hints:    G( f)    J( f)

Proof of Theorem rngoisoval
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq12 6090 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( r  RngHom  s )  =  ( R  RngHom  S ) )
2 fveq2 5728 . . . . . . . 8  |-  ( r  =  R  ->  ( 1st `  r )  =  ( 1st `  R
) )
3 rngisoval.1 . . . . . . . 8  |-  G  =  ( 1st `  R
)
42, 3syl6eqr 2486 . . . . . . 7  |-  ( r  =  R  ->  ( 1st `  r )  =  G )
54rneqd 5097 . . . . . 6  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  ran  G )
6 rngisoval.2 . . . . . 6  |-  X  =  ran  G
75, 6syl6eqr 2486 . . . . 5  |-  ( r  =  R  ->  ran  ( 1st `  r )  =  X )
8 f1oeq2 5666 . . . . 5  |-  ( ran  ( 1st `  r
)  =  X  -> 
( f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
)  <->  f : X -1-1-onto-> ran  ( 1st `  s ) ) )
97, 8syl 16 . . . 4  |-  ( r  =  R  ->  (
f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s )  <->  f : X
-1-1-onto-> ran  ( 1st `  s
) ) )
10 fveq2 5728 . . . . . . . 8  |-  ( s  =  S  ->  ( 1st `  s )  =  ( 1st `  S
) )
11 rngisoval.3 . . . . . . . 8  |-  J  =  ( 1st `  S
)
1210, 11syl6eqr 2486 . . . . . . 7  |-  ( s  =  S  ->  ( 1st `  s )  =  J )
1312rneqd 5097 . . . . . 6  |-  ( s  =  S  ->  ran  ( 1st `  s )  =  ran  J )
14 rngisoval.4 . . . . . 6  |-  Y  =  ran  J
1513, 14syl6eqr 2486 . . . . 5  |-  ( s  =  S  ->  ran  ( 1st `  s )  =  Y )
16 f1oeq3 5667 . . . . 5  |-  ( ran  ( 1st `  s
)  =  Y  -> 
( f : X -1-1-onto-> ran  ( 1st `  s )  <-> 
f : X -1-1-onto-> Y ) )
1715, 16syl 16 . . . 4  |-  ( s  =  S  ->  (
f : X -1-1-onto-> ran  ( 1st `  s )  <->  f : X
-1-1-onto-> Y ) )
189, 17sylan9bb 681 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
)  <->  f : X -1-1-onto-> Y
) )
191, 18rabeqbidv 2951 . 2  |-  ( ( r  =  R  /\  s  =  S )  ->  { f  e.  ( r  RngHom  s )  |  f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s ) }  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y } )
20 df-rngoiso 26592 . 2  |-  RngIso  =  ( r  e.  RingOps ,  s  e.  RingOps  |->  { f  e.  ( r  RngHom  s )  |  f : ran  ( 1st `  r ) -1-1-onto-> ran  ( 1st `  s
) } )
21 ovex 6106 . . 3  |-  ( R 
RngHom  S )  e.  _V
2221rabex 4354 . 2  |-  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }  e.  _V
2319, 20, 22ovmpt2a 6204 1  |-  ( ( R  e.  RingOps  /\  S  e.  RingOps )  ->  ( R  RngIso  S )  =  { f  e.  ( R  RngHom  S )  |  f : X -1-1-onto-> Y }
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725   {crab 2709   ran crn 4879   -1-1-onto->wf1o 5453   ` cfv 5454  (class class class)co 6081   1stc1st 6347   RingOpscrngo 21963    RngHom crnghom 26576    RngIso crngiso 26577
This theorem is referenced by:  isrngoiso  26594
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-sbc 3162  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-uni 4016  df-br 4213  df-opab 4267  df-id 4498  df-xp 4884  df-rel 4885  df-cnv 4886  df-co 4887  df-dm 4888  df-rn 4889  df-iota 5418  df-fun 5456  df-fn 5457  df-f 5458  df-f1 5459  df-fo 5460  df-f1o 5461  df-fv 5462  df-ov 6084  df-oprab 6085  df-mpt2 6086  df-rngoiso 26592
  Copyright terms: Public domain W3C validator