MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngomndo Unicode version

Theorem rngomndo 21859
Description: In a unital ring the multiplication is a monoid. (Contributed by FL, 24-Jan-2010.) (Revised by Mario Carneiro, 22-Dec-2013.) (New usage is discouraged.)
Hypothesis
Ref Expression
unmnd.1  |-  H  =  ( 2nd `  R
)
Assertion
Ref Expression
rngomndo  |-  ( R  e.  RingOps  ->  H  e. MndOp )

Proof of Theorem rngomndo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2389 . . . 4  |-  ( 1st `  R )  =  ( 1st `  R )
2 unmnd.1 . . . 4  |-  H  =  ( 2nd `  R
)
3 eqid 2389 . . . 4  |-  ran  ( 1st `  R )  =  ran  ( 1st `  R
)
41, 2, 3rngosm 21819 . . 3  |-  ( R  e.  RingOps  ->  H : ( ran  ( 1st `  R
)  X.  ran  ( 1st `  R ) ) --> ran  ( 1st `  R
) )
51, 2, 3rngoass 21825 . . . 4  |-  ( ( R  e.  RingOps  /\  (
x  e.  ran  ( 1st `  R )  /\  y  e.  ran  ( 1st `  R )  /\  z  e.  ran  ( 1st `  R
) ) )  -> 
( ( x H y ) H z )  =  ( x H ( y H z ) ) )
65ralrimivvva 2744 . . 3  |-  ( R  e.  RingOps  ->  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) A. z  e.  ran  ( 1st `  R ) ( ( x H y ) H z )  =  ( x H ( y H z ) ) )
71, 2, 3rngoi 21818 . . . . 5  |-  ( R  e.  RingOps  ->  ( ( ( 1st `  R )  e.  AbelOp  /\  H :
( ran  ( 1st `  R )  X.  ran  ( 1st `  R ) ) --> ran  ( 1st `  R ) )  /\  ( A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) A. z  e.  ran  ( 1st `  R ) ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y ( 1st `  R ) z ) )  =  ( ( x H y ) ( 1st `  R
) ( x H z ) )  /\  ( ( x ( 1st `  R ) y ) H z )  =  ( ( x H z ) ( 1st `  R
) ( y H z ) ) )  /\  E. x  e. 
ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
87simprd 450 . . . 4  |-  ( R  e.  RingOps  ->  ( A. x  e.  ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) A. z  e. 
ran  ( 1st `  R
) ( ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  ( x H ( y ( 1st `  R ) z ) )  =  ( ( x H y ) ( 1st `  R ) ( x H z ) )  /\  ( ( x ( 1st `  R
) y ) H z )  =  ( ( x H z ) ( 1st `  R
) ( y H z ) ) )  /\  E. x  e. 
ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) )
98simprd 450 . . 3  |-  ( R  e.  RingOps  ->  E. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) ( ( x H y )  =  y  /\  ( y H x )  =  y ) )
102, 1rngorn1 21857 . . . 4  |-  ( R  e.  RingOps  ->  ran  ( 1st `  R )  =  dom  dom 
H )
11 xpid11 5033 . . . . . . . 8  |-  ( ( dom  dom  H  X.  dom  dom  H )  =  ( ran  ( 1st `  R )  X.  ran  ( 1st `  R ) )  <->  dom  dom  H  =  ran  ( 1st `  R
) )
1211biimpri 198 . . . . . . 7  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( dom  dom  H  X.  dom  dom  H
)  =  ( ran  ( 1st `  R
)  X.  ran  ( 1st `  R ) ) )
13 feq23 5521 . . . . . . 7  |-  ( ( ( dom  dom  H  X.  dom  dom  H )  =  ( ran  ( 1st `  R )  X. 
ran  ( 1st `  R
) )  /\  dom  dom 
H  =  ran  ( 1st `  R ) )  ->  ( H :
( dom  dom  H  X.  dom  dom  H ) --> dom 
dom  H  <->  H : ( ran  ( 1st `  R
)  X.  ran  ( 1st `  R ) ) --> ran  ( 1st `  R
) ) )
1412, 13mpancom 651 . . . . . 6  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( H :
( dom  dom  H  X.  dom  dom  H ) --> dom 
dom  H  <->  H : ( ran  ( 1st `  R
)  X.  ran  ( 1st `  R ) ) --> ran  ( 1st `  R
) ) )
15 raleq 2849 . . . . . . . 8  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( A. z  e.  dom  dom  H (
( x H y ) H z )  =  ( x H ( y H z ) )  <->  A. z  e.  ran  ( 1st `  R
) ( ( x H y ) H z )  =  ( x H ( y H z ) ) ) )
1615raleqbi1dv 2857 . . . . . . 7  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( A. y  e.  dom  dom  H A. z  e.  dom  dom  H
( ( x H y ) H z )  =  ( x H ( y H z ) )  <->  A. y  e.  ran  ( 1st `  R
) A. z  e. 
ran  ( 1st `  R
) ( ( x H y ) H z )  =  ( x H ( y H z ) ) ) )
1716raleqbi1dv 2857 . . . . . 6  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( A. x  e.  dom  dom  H A. y  e.  dom  dom  H A. z  e.  dom  dom 
H ( ( x H y ) H z )  =  ( x H ( y H z ) )  <->  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) A. z  e.  ran  ( 1st `  R ) ( ( x H y ) H z )  =  ( x H ( y H z ) ) ) )
18 raleq 2849 . . . . . . 7  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( A. y  e.  dom  dom  H (
( x H y )  =  y  /\  ( y H x )  =  y )  <->  A. y  e.  ran  ( 1st `  R ) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) )
1918rexeqbi1dv 2858 . . . . . 6  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( E. x  e.  dom  dom  H A. y  e.  dom  dom  H
( ( x H y )  =  y  /\  ( y H x )  =  y )  <->  E. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) )
2014, 17, 193anbi123d 1254 . . . . 5  |-  ( dom 
dom  H  =  ran  ( 1st `  R )  ->  ( ( H : ( dom  dom  H  X.  dom  dom  H
) --> dom  dom  H  /\  A. x  e.  dom  dom  H A. y  e.  dom  dom 
H A. z  e. 
dom  dom  H ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e.  dom  dom  H A. y  e.  dom  dom  H
( ( x H y )  =  y  /\  ( y H x )  =  y ) )  <->  ( H : ( ran  ( 1st `  R )  X. 
ran  ( 1st `  R
) ) --> ran  ( 1st `  R )  /\  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) A. z  e.  ran  ( 1st `  R
) ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e. 
ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
2120eqcoms 2392 . . . 4  |-  ( ran  ( 1st `  R
)  =  dom  dom  H  ->  ( ( H : ( dom  dom  H  X.  dom  dom  H
) --> dom  dom  H  /\  A. x  e.  dom  dom  H A. y  e.  dom  dom 
H A. z  e. 
dom  dom  H ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e.  dom  dom  H A. y  e.  dom  dom  H
( ( x H y )  =  y  /\  ( y H x )  =  y ) )  <->  ( H : ( ran  ( 1st `  R )  X. 
ran  ( 1st `  R
) ) --> ran  ( 1st `  R )  /\  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) A. z  e.  ran  ( 1st `  R
) ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e. 
ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
2210, 21syl 16 . . 3  |-  ( R  e.  RingOps  ->  ( ( H : ( dom  dom  H  X.  dom  dom  H
) --> dom  dom  H  /\  A. x  e.  dom  dom  H A. y  e.  dom  dom 
H A. z  e. 
dom  dom  H ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e.  dom  dom  H A. y  e.  dom  dom  H
( ( x H y )  =  y  /\  ( y H x )  =  y ) )  <->  ( H : ( ran  ( 1st `  R )  X. 
ran  ( 1st `  R
) ) --> ran  ( 1st `  R )  /\  A. x  e.  ran  ( 1st `  R ) A. y  e.  ran  ( 1st `  R ) A. z  e.  ran  ( 1st `  R
) ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e. 
ran  ( 1st `  R
) A. y  e. 
ran  ( 1st `  R
) ( ( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
234, 6, 9, 22mpbir3and 1137 . 2  |-  ( R  e.  RingOps  ->  ( H :
( dom  dom  H  X.  dom  dom  H ) --> dom 
dom  H  /\  A. x  e.  dom  dom  H A. y  e.  dom  dom  H A. z  e.  dom  dom 
H ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e. 
dom  dom  H A. y  e.  dom  dom  H (
( x H y )  =  y  /\  ( y H x )  =  y ) ) )
24 fvex 5684 . . . 4  |-  ( 2nd `  R )  e.  _V
25 eleq1 2449 . . . 4  |-  ( H  =  ( 2nd `  R
)  ->  ( H  e.  _V  <->  ( 2nd `  R
)  e.  _V )
)
2624, 25mpbiri 225 . . 3  |-  ( H  =  ( 2nd `  R
)  ->  H  e.  _V )
27 eqid 2389 . . . 4  |-  dom  dom  H  =  dom  dom  H
2827ismndo1 21782 . . 3  |-  ( H  e.  _V  ->  ( H  e. MndOp  <->  ( H :
( dom  dom  H  X.  dom  dom  H ) --> dom 
dom  H  /\  A. x  e.  dom  dom  H A. y  e.  dom  dom  H A. z  e.  dom  dom 
H ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e. 
dom  dom  H A. y  e.  dom  dom  H (
( x H y )  =  y  /\  ( y H x )  =  y ) ) ) )
292, 26, 28mp2b 10 . 2  |-  ( H  e. MndOp 
<->  ( H : ( dom  dom  H  X.  dom  dom  H ) --> dom 
dom  H  /\  A. x  e.  dom  dom  H A. y  e.  dom  dom  H A. z  e.  dom  dom 
H ( ( x H y ) H z )  =  ( x H ( y H z ) )  /\  E. x  e. 
dom  dom  H A. y  e.  dom  dom  H (
( x H y )  =  y  /\  ( y H x )  =  y ) ) )
3023, 29sylibr 204 1  |-  ( R  e.  RingOps  ->  H  e. MndOp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717   A.wral 2651   E.wrex 2652   _Vcvv 2901    X. cxp 4818   dom cdm 4820   ran crn 4821   -->wf 5392   ` cfv 5396  (class class class)co 6022   1stc1st 6288   2ndc2nd 6289   AbelOpcablo 21719  MndOpcmndo 21775   RingOpscrngo 21813
This theorem is referenced by:  rngoidmlem  21861  rngo1cl  21867  isdrngo2  26267
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-ral 2656  df-rex 2657  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-nul 3574  df-if 3685  df-sn 3765  df-pr 3766  df-op 3768  df-uni 3960  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-id 4441  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-fo 5402  df-fv 5404  df-ov 6025  df-1st 6290  df-2nd 6291  df-grpo 21629  df-ablo 21720  df-ass 21751  df-exid 21753  df-mgm 21757  df-sgr 21769  df-mndo 21776  df-rngo 21814
  Copyright terms: Public domain W3C validator