Users' Mathboxes Mathbox for Frédéric Liné < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoridfz Unicode version

Theorem rngoridfz 25437
Description: In a unitary ring a left invertible element is different from zero iff  1  =/=  0. (Contributed by FL, 18-Apr-2010.)
Hypotheses
Ref Expression
zerdivemp.1  |-  G  =  ( 1st `  R
)
zerdivemp.2  |-  H  =  ( 2nd `  R
)
zerdivemp.3  |-  Z  =  (GId `  G )
zerdivemp.4  |-  X  =  ran  G
zerdivemp.5  |-  U  =  (GId `  H )
Assertion
Ref Expression
rngoridfz  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( A  =/=  Z  <->  U  =/=  Z
) )
Distinct variable groups:    A, a    R, a    U, a    X, a    Z, a
Allowed substitution hints:    G( a)    H( a)

Proof of Theorem rngoridfz
StepHypRef Expression
1 oveq2 5866 . . . . . . . 8  |-  ( A  =  Z  ->  (
a H A )  =  ( a H Z ) )
2 zerdivemp.3 . . . . . . . . . . . . . . 15  |-  Z  =  (GId `  G )
3 zerdivemp.4 . . . . . . . . . . . . . . 15  |-  X  =  ran  G
4 zerdivemp.1 . . . . . . . . . . . . . . 15  |-  G  =  ( 1st `  R
)
5 zerdivemp.2 . . . . . . . . . . . . . . 15  |-  H  =  ( 2nd `  R
)
62, 3, 4, 5rngorz 21069 . . . . . . . . . . . . . 14  |-  ( ( R  e.  RingOps  /\  a  e.  X )  ->  (
a H Z )  =  Z )
7 eqeq12 2295 . . . . . . . . . . . . . . . 16  |-  ( ( ( a H A )  =  U  /\  ( a H Z )  =  Z )  ->  ( ( a H A )  =  ( a H Z )  <->  U  =  Z
) )
87biimpd 198 . . . . . . . . . . . . . . 15  |-  ( ( ( a H A )  =  U  /\  ( a H Z )  =  Z )  ->  ( ( a H A )  =  ( a H Z )  ->  U  =  Z ) )
98ex 423 . . . . . . . . . . . . . 14  |-  ( ( a H A )  =  U  ->  (
( a H Z )  =  Z  -> 
( ( a H A )  =  ( a H Z )  ->  U  =  Z ) ) )
106, 9syl5com 26 . . . . . . . . . . . . 13  |-  ( ( R  e.  RingOps  /\  a  e.  X )  ->  (
( a H A )  =  U  -> 
( ( a H A )  =  ( a H Z )  ->  U  =  Z ) ) )
1110ex 423 . . . . . . . . . . . 12  |-  ( R  e.  RingOps  ->  ( a  e.  X  ->  ( (
a H A )  =  U  ->  (
( a H A )  =  ( a H Z )  ->  U  =  Z )
) ) )
1211com3l 75 . . . . . . . . . . 11  |-  ( a  e.  X  ->  (
( a H A )  =  U  -> 
( R  e.  RingOps  -> 
( ( a H A )  =  ( a H Z )  ->  U  =  Z ) ) ) )
1312imp 418 . . . . . . . . . 10  |-  ( ( a  e.  X  /\  ( a H A )  =  U )  ->  ( R  e.  RingOps 
->  ( ( a H A )  =  ( a H Z )  ->  U  =  Z ) ) )
14133adant3 975 . . . . . . . . 9  |-  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  -> 
( ( a H A )  =  ( a H Z )  ->  U  =  Z ) ) )
1514imp 418 . . . . . . . 8  |-  ( ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  /\  R  e.  RingOps )  -> 
( ( a H A )  =  ( a H Z )  ->  U  =  Z ) )
161, 15syl5 28 . . . . . . 7  |-  ( ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  /\  R  e.  RingOps )  -> 
( A  =  Z  ->  U  =  Z ) )
17 oveq2 5866 . . . . . . . 8  |-  ( U  =  Z  ->  ( A H U )  =  ( A H Z ) )
184rneqi 4905 . . . . . . . . . . . . . 14  |-  ran  G  =  ran  ( 1st `  R
)
193, 18eqtri 2303 . . . . . . . . . . . . 13  |-  X  =  ran  ( 1st `  R
)
20 zerdivemp.5 . . . . . . . . . . . . 13  |-  U  =  (GId `  H )
215, 19, 20rngoridm 21092 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H U )  =  A )
222, 3, 4, 5rngorz 21069 . . . . . . . . . . . 12  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )
23 eqeq12 2295 . . . . . . . . . . . . 13  |-  ( ( ( A H U )  =  A  /\  ( A H Z )  =  Z )  -> 
( ( A H U )  =  ( A H Z )  <-> 
A  =  Z ) )
2423biimpd 198 . . . . . . . . . . . 12  |-  ( ( ( A H U )  =  A  /\  ( A H Z )  =  Z )  -> 
( ( A H U )  =  ( A H Z )  ->  A  =  Z ) )
2521, 22, 24syl2anc 642 . . . . . . . . . . 11  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H U )  =  ( A H Z )  ->  A  =  Z )
)
2625expcom 424 . . . . . . . . . 10  |-  ( A  e.  X  ->  ( R  e.  RingOps  ->  (
( A H U )  =  ( A H Z )  ->  A  =  Z )
) )
27263ad2ant3 978 . . . . . . . . 9  |-  ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  ->  ( R  e.  RingOps  -> 
( ( A H U )  =  ( A H Z )  ->  A  =  Z ) ) )
2827imp 418 . . . . . . . 8  |-  ( ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  /\  R  e.  RingOps )  -> 
( ( A H U )  =  ( A H Z )  ->  A  =  Z ) )
2917, 28syl5 28 . . . . . . 7  |-  ( ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  /\  R  e.  RingOps )  -> 
( U  =  Z  ->  A  =  Z ) )
3016, 29impbid 183 . . . . . 6  |-  ( ( ( a  e.  X  /\  ( a H A )  =  U  /\  A  e.  X )  /\  R  e.  RingOps )  -> 
( A  =  Z  <-> 
U  =  Z ) )
31303exp1 1167 . . . . 5  |-  ( a  e.  X  ->  (
( a H A )  =  U  -> 
( A  e.  X  ->  ( R  e.  RingOps  -> 
( A  =  Z  <-> 
U  =  Z ) ) ) ) )
3231rexlimiv 2661 . . . 4  |-  ( E. a  e.  X  ( a H A )  =  U  ->  ( A  e.  X  ->  ( R  e.  RingOps  ->  ( A  =  Z  <->  U  =  Z ) ) ) )
3332com13 74 . . 3  |-  ( R  e.  RingOps  ->  ( A  e.  X  ->  ( E. a  e.  X  (
a H A )  =  U  ->  ( A  =  Z  <->  U  =  Z ) ) ) )
34333imp 1145 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( A  =  Z  <->  U  =  Z
) )
3534necon3bid 2481 1  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  E. a  e.  X  ( a H A )  =  U )  ->  ( A  =/=  Z  <->  U  =/=  Z
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   E.wrex 2544   ran crn 4690   ` cfv 5255  (class class class)co 5858   1stc1st 6120   2ndc2nd 6121  GIdcgi 20854   RingOpscrngo 21042
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-fo 5261  df-fv 5263  df-ov 5861  df-1st 6122  df-2nd 6123  df-riota 6304  df-grpo 20858  df-gid 20859  df-ablo 20949  df-ass 20980  df-exid 20982  df-mgm 20986  df-sgr 20998  df-mndo 21005  df-rngo 21043
  Copyright terms: Public domain W3C validator