MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngorz Structured version   Unicode version

Theorem rngorz 21992
Description: The zero of a unital ring is a right absorbing element. (Contributed by FL, 31-Aug-2009.) (New usage is discouraged.)
Hypotheses
Ref Expression
ringlz.1  |-  Z  =  (GId `  G )
ringlz.2  |-  X  =  ran  G
ringlz.3  |-  G  =  ( 1st `  R
)
ringlz.4  |-  H  =  ( 2nd `  R
)
Assertion
Ref Expression
rngorz  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )

Proof of Theorem rngorz
StepHypRef Expression
1 ringlz.3 . . . . . . 7  |-  G  =  ( 1st `  R
)
21rngogrpo 21980 . . . . . 6  |-  ( R  e.  RingOps  ->  G  e.  GrpOp )
3 ringlz.2 . . . . . . . 8  |-  X  =  ran  G
4 ringlz.1 . . . . . . . 8  |-  Z  =  (GId `  G )
53, 4grpoidcl 21807 . . . . . . 7  |-  ( G  e.  GrpOp  ->  Z  e.  X )
63, 4grpolid 21809 . . . . . . 7  |-  ( ( G  e.  GrpOp  /\  Z  e.  X )  ->  ( Z G Z )  =  Z )
75, 6mpdan 651 . . . . . 6  |-  ( G  e.  GrpOp  ->  ( Z G Z )  =  Z )
82, 7syl 16 . . . . 5  |-  ( R  e.  RingOps  ->  ( Z G Z )  =  Z )
98adantr 453 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( Z G Z )  =  Z )
109oveq2d 6099 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( Z G Z ) )  =  ( A H Z ) )
11 simpr 449 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  A  e.  X )
121, 3, 4rngo0cl 21988 . . . . . 6  |-  ( R  e.  RingOps  ->  Z  e.  X
)
1312adantr 453 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  Z  e.  X )
1411, 13, 133jca 1135 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A  e.  X  /\  Z  e.  X  /\  Z  e.  X )
)
15 ringlz.4 . . . . 5  |-  H  =  ( 2nd `  R
)
161, 15, 3rngodi 21975 . . . 4  |-  ( ( R  e.  RingOps  /\  ( A  e.  X  /\  Z  e.  X  /\  Z  e.  X )
)  ->  ( A H ( Z G Z ) )  =  ( ( A H Z ) G ( A H Z ) ) )
1714, 16syldan 458 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H ( Z G Z ) )  =  ( ( A H Z ) G ( A H Z ) ) )
182adantr 453 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  G  e.  GrpOp )
191, 15, 3rngocl 21972 . . . . 5  |-  ( ( R  e.  RingOps  /\  A  e.  X  /\  Z  e.  X )  ->  ( A H Z )  e.  X )
2013, 19mpd3an3 1281 . . . 4  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  e.  X )
213, 4grpolid 21809 . . . . 5  |-  ( ( G  e.  GrpOp  /\  ( A H Z )  e.  X )  ->  ( Z G ( A H Z ) )  =  ( A H Z ) )
2221eqcomd 2443 . . . 4  |-  ( ( G  e.  GrpOp  /\  ( A H Z )  e.  X )  ->  ( A H Z )  =  ( Z G ( A H Z ) ) )
2318, 20, 22syl2anc 644 . . 3  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  ( Z G ( A H Z ) ) )
2410, 17, 233eqtr3d 2478 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) ) )
253grporcan 21811 . . 3  |-  ( ( G  e.  GrpOp  /\  (
( A H Z )  e.  X  /\  Z  e.  X  /\  ( A H Z )  e.  X ) )  ->  ( ( ( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) )  <->  ( A H Z )  =  Z ) )
2618, 20, 13, 20, 25syl13anc 1187 . 2  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  (
( ( A H Z ) G ( A H Z ) )  =  ( Z G ( A H Z ) )  <->  ( A H Z )  =  Z ) )
2724, 26mpbid 203 1  |-  ( ( R  e.  RingOps  /\  A  e.  X )  ->  ( A H Z )  =  Z )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   ran crn 4881   ` cfv 5456  (class class class)co 6083   1stc1st 6349   2ndc2nd 6350   GrpOpcgr 21776  GIdcgi 21777   RingOpscrngo 21965
This theorem is referenced by:  rngoueqz  22020  zerdivemp1  22024  rngoridfz  22025  rngonegmn1r  26568  zerdivemp1x  26573  0idl  26637  keridl  26644
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-sep 4332  ax-nul 4340  ax-pow 4379  ax-pr 4405  ax-un 4703
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-ral 2712  df-rex 2713  df-reu 2714  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-nul 3631  df-if 3742  df-sn 3822  df-pr 3823  df-op 3825  df-uni 4018  df-iun 4097  df-br 4215  df-opab 4269  df-mpt 4270  df-id 4500  df-xp 4886  df-rel 4887  df-cnv 4888  df-co 4889  df-dm 4890  df-rn 4891  df-iota 5420  df-fun 5458  df-fn 5459  df-f 5460  df-fo 5462  df-fv 5464  df-ov 6086  df-1st 6351  df-2nd 6352  df-riota 6551  df-grpo 21781  df-gid 21782  df-ablo 21872  df-rngo 21966
  Copyright terms: Public domain W3C validator