MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngoueqz Unicode version

Theorem rngoueqz 21529
Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
uznzr.1  |-  G  =  ( 1st `  R
)
uznzr.2  |-  H  =  ( 2nd `  R
)
uznzr.3  |-  Z  =  (GId `  G )
uznzr.4  |-  U  =  (GId `  H )
uznzr.5  |-  X  =  ran  G
Assertion
Ref Expression
rngoueqz  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )

Proof of Theorem rngoueqz
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 uznzr.1 . . . 4  |-  G  =  ( 1st `  R
)
2 uznzr.5 . . . 4  |-  X  =  ran  G
3 uznzr.3 . . . 4  |-  Z  =  (GId `  G )
41, 2, 3rngo0cl 21497 . . 3  |-  ( R  e.  RingOps  ->  Z  e.  X
)
5 en1eqsn 7235 . . . . . 6  |-  ( ( Z  e.  X  /\  X  ~~  1o )  ->  X  =  { Z } )
61rneqi 5008 . . . . . . . 8  |-  ran  G  =  ran  ( 1st `  R
)
7 uznzr.2 . . . . . . . 8  |-  H  =  ( 2nd `  R
)
8 uznzr.4 . . . . . . . 8  |-  U  =  (GId `  H )
96, 7, 8rngo1cl 21528 . . . . . . 7  |-  ( R  e.  RingOps  ->  U  e.  ran  G )
10 eleq2 2427 . . . . . . . . . 10  |-  ( X  =  { Z }  ->  ( U  e.  X  <->  U  e.  { Z }
) )
1110biimpd 198 . . . . . . . . 9  |-  ( X  =  { Z }  ->  ( U  e.  X  ->  U  e.  { Z } ) )
12 elsni 3753 . . . . . . . . 9  |-  ( U  e.  { Z }  ->  U  =  Z )
1311, 12syl6com 31 . . . . . . . 8  |-  ( U  e.  X  ->  ( X  =  { Z }  ->  U  =  Z ) )
142eqcomi 2370 . . . . . . . 8  |-  ran  G  =  X
1513, 14eleq2s 2458 . . . . . . 7  |-  ( U  e.  ran  G  -> 
( X  =  { Z }  ->  U  =  Z ) )
169, 15syl 15 . . . . . 6  |-  ( R  e.  RingOps  ->  ( X  =  { Z }  ->  U  =  Z ) )
175, 16syl5com 26 . . . . 5  |-  ( ( Z  e.  X  /\  X  ~~  1o )  -> 
( R  e.  RingOps  ->  U  =  Z )
)
1817ex 423 . . . 4  |-  ( Z  e.  X  ->  ( X  ~~  1o  ->  ( R  e.  RingOps  ->  U  =  Z ) ) )
1918com23 72 . . 3  |-  ( Z  e.  X  ->  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) ) )
204, 19mpcom 32 . 2  |-  ( R  e.  RingOps  ->  ( X  ~~  1o  ->  U  =  Z ) )
211, 2rngon0 21515 . . 3  |-  ( R  e.  RingOps  ->  X  =/=  (/) )
22 oveq2 5989 . . . . . 6  |-  ( U  =  Z  ->  (
x H U )  =  ( x H Z ) )
2322ralrimivw 2712 . . . . 5  |-  ( U  =  Z  ->  A. x  e.  X  ( x H U )  =  ( x H Z ) )
243, 2, 1, 7rngorz 21501 . . . . . . 7  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H Z )  =  Z )
2524ralrimiva 2711 . . . . . 6  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H Z )  =  Z )
262, 6eqtri 2386 . . . . . . . . 9  |-  X  =  ran  ( 1st `  R
)
277, 26, 8rngoridm 21524 . . . . . . . 8  |-  ( ( R  e.  RingOps  /\  x  e.  X )  ->  (
x H U )  =  x )
2827ralrimiva 2711 . . . . . . 7  |-  ( R  e.  RingOps  ->  A. x  e.  X  ( x H U )  =  x )
29 r19.26 2760 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  <-> 
( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) ) )
30 r19.26 2760 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  <->  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z ) )
31 eqtr 2383 . . . . . . . . . . . . . . . . . 18  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  x  =  ( x H Z ) )
32 eqtr 2383 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x  =  ( x H Z )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3332ex 423 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  ( x H Z )  ->  (
( x H Z )  =  Z  ->  x  =  Z )
)
3431, 33syl 15 . . . . . . . . . . . . . . . . 17  |-  ( ( x  =  ( x H U )  /\  ( x H U )  =  ( x H Z ) )  ->  ( ( x H Z )  =  Z  ->  x  =  Z ) )
3534ex 423 . . . . . . . . . . . . . . . 16  |-  ( x  =  ( x H U )  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3635eqcoms 2369 . . . . . . . . . . . . . . 15  |-  ( ( x H U )  =  x  ->  (
( x H U )  =  ( x H Z )  -> 
( ( x H Z )  =  Z  ->  x  =  Z ) ) )
3736imp31 421 . . . . . . . . . . . . . 14  |-  ( ( ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  x  =  Z )
3837ralimi 2703 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  A. x  e.  X  x  =  Z )
39 eqsn 3875 . . . . . . . . . . . . . . 15  |-  ( X  =/=  (/)  ->  ( X  =  { Z }  <->  A. x  e.  X  x  =  Z ) )
40 ensn1g 7069 . . . . . . . . . . . . . . . . 17  |-  ( Z  e.  X  ->  { Z }  ~~  1o )
414, 40syl 15 . . . . . . . . . . . . . . . 16  |-  ( R  e.  RingOps  ->  { Z }  ~~  1o )
42 breq1 4128 . . . . . . . . . . . . . . . 16  |-  ( X  =  { Z }  ->  ( X  ~~  1o  <->  { Z }  ~~  1o ) )
4341, 42syl5ibr 212 . . . . . . . . . . . . . . 15  |-  ( X  =  { Z }  ->  ( R  e.  RingOps  ->  X  ~~  1o ) )
4439, 43syl6bir 220 . . . . . . . . . . . . . 14  |-  ( X  =/=  (/)  ->  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  X  ~~  1o ) ) )
4544com3l 75 . . . . . . . . . . . . 13  |-  ( A. x  e.  X  x  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4638, 45syl 15 . . . . . . . . . . . 12  |-  ( A. x  e.  X  (
( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4730, 46sylbir 204 . . . . . . . . . . 11  |-  ( ( A. x  e.  X  ( ( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  /\  A. x  e.  X  ( x H Z )  =  Z )  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
4847ex 423 . . . . . . . . . 10  |-  ( A. x  e.  X  (
( x H U )  =  x  /\  ( x H U )  =  ( x H Z ) )  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
4929, 48sylbir 204 . . . . . . . . 9  |-  ( ( A. x  e.  X  ( x H U )  =  x  /\  A. x  e.  X  ( x H U )  =  ( x H Z ) )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5049ex 423 . . . . . . . 8  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  -> 
( A. x  e.  X  ( x H Z )  =  Z  ->  ( R  e.  RingOps 
->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5150com24 81 . . . . . . 7  |-  ( A. x  e.  X  (
x H U )  =  x  ->  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  -> 
( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) ) )
5228, 51mpcom 32 . . . . . 6  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H Z )  =  Z  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) ) )
5325, 52mpd 14 . . . . 5  |-  ( R  e.  RingOps  ->  ( A. x  e.  X  ( x H U )  =  ( x H Z )  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5423, 53syl5com 26 . . . 4  |-  ( U  =  Z  ->  ( R  e.  RingOps  ->  ( X  =/=  (/)  ->  X  ~~  1o ) ) )
5554com13 74 . . 3  |-  ( X  =/=  (/)  ->  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) ) )
5621, 55mpcom 32 . 2  |-  ( R  e.  RingOps  ->  ( U  =  Z  ->  X  ~~  1o ) )
5720, 56impbid 183 1  |-  ( R  e.  RingOps  ->  ( X  ~~  1o 
<->  U  =  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    = wceq 1647    e. wcel 1715    =/= wne 2529   A.wral 2628   (/)c0 3543   {csn 3729   class class class wbr 4125   ran crn 4793   ` cfv 5358  (class class class)co 5981   1stc1st 6247   2ndc2nd 6248   1oc1o 6614    ~~ cen 7003  GIdcgi 21286   RingOpscrngo 21474
This theorem is referenced by:  dvrunz  21532  isdmn3  26290
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1551  ax-5 1562  ax-17 1621  ax-9 1659  ax-8 1680  ax-13 1717  ax-14 1719  ax-6 1734  ax-7 1739  ax-11 1751  ax-12 1937  ax-ext 2347  ax-sep 4243  ax-nul 4251  ax-pow 4290  ax-pr 4316  ax-un 4615
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 936  df-3an 937  df-tru 1324  df-ex 1547  df-nf 1550  df-sb 1654  df-eu 2221  df-mo 2222  df-clab 2353  df-cleq 2359  df-clel 2362  df-nfc 2491  df-ne 2531  df-ral 2633  df-rex 2634  df-reu 2635  df-rmo 2636  df-rab 2637  df-v 2875  df-sbc 3078  df-csb 3168  df-dif 3241  df-un 3243  df-in 3245  df-ss 3252  df-pss 3254  df-nul 3544  df-if 3655  df-pw 3716  df-sn 3735  df-pr 3736  df-tp 3737  df-op 3738  df-uni 3930  df-iun 4009  df-br 4126  df-opab 4180  df-mpt 4181  df-tr 4216  df-eprel 4408  df-id 4412  df-po 4417  df-so 4418  df-fr 4455  df-we 4457  df-ord 4498  df-on 4499  df-lim 4500  df-suc 4501  df-om 4760  df-xp 4798  df-rel 4799  df-cnv 4800  df-co 4801  df-dm 4802  df-rn 4803  df-res 4804  df-ima 4805  df-iota 5322  df-fun 5360  df-fn 5361  df-f 5362  df-f1 5363  df-fo 5364  df-f1o 5365  df-fv 5366  df-ov 5984  df-1st 6249  df-2nd 6250  df-riota 6446  df-1o 6621  df-er 6802  df-en 7007  df-dom 7008  df-sdom 7009  df-fin 7010  df-grpo 21290  df-gid 21291  df-ablo 21381  df-ass 21412  df-exid 21414  df-mgm 21418  df-sgr 21430  df-mndo 21437  df-rngo 21475
  Copyright terms: Public domain W3C validator