MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngpropd Unicode version

Theorem rngpropd 15388
Description: If two structures have the same group components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
rngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
rngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
rngpropd  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, L, y

Proof of Theorem rngpropd
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  ph )
2 simprll 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  u  e.  B )
3 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  K  e.  Grp )
4 simprlr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
v  e.  B )
5 rngpropd.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  =  ( Base `  K ) )
65ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  B  =  ( Base `  K ) )
74, 6eleqtrd 2372 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
v  e.  ( Base `  K ) )
8 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  w  e.  B )
98, 6eleqtrd 2372 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  w  e.  ( Base `  K ) )
10 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( Base `  K )  =  (
Base `  K )
11 eqid 2296 . . . . . . . . . . . . . . . 16  |-  ( +g  `  K )  =  ( +g  `  K )
1210, 11grpcl 14511 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Grp  /\  v  e.  ( Base `  K )  /\  w  e.  ( Base `  K
) )  ->  (
v ( +g  `  K
) w )  e.  ( Base `  K
) )
133, 7, 9, 12syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  e.  ( Base `  K
) )
1413, 6eleqtrrd 2373 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  e.  B )
15 rngpropd.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
1615proplem 13608 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  B  /\  (
v ( +g  `  K
) w )  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
171, 2, 14, 16syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
18 rngpropd.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
1918proplem 13608 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
201, 4, 8, 19syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
2120oveq2d 5890 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  L ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
2217, 21eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
23 simplrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
(mulGrp `  K )  e.  Mnd )
242, 6eleqtrd 2372 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  u  e.  ( Base `  K ) )
25 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  (mulGrp `  K )  =  (mulGrp `  K )
2625, 10mgpbas 15347 . . . . . . . . . . . . . . . 16  |-  ( Base `  K )  =  (
Base `  (mulGrp `  K
) )
27 eqid 2296 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  K )  =  ( .r `  K
)
2825, 27mgpplusg 15345 . . . . . . . . . . . . . . . 16  |-  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) )
2926, 28mndcl 14388 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  u  e.  ( Base `  K
)  /\  v  e.  ( Base `  K )
)  ->  ( u
( .r `  K
) v )  e.  ( Base `  K
) )
3023, 24, 7, 29syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) v )  e.  ( Base `  K ) )
3130, 6eleqtrrd 2373 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) v )  e.  B )
3226, 28mndcl 14388 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  u  e.  ( Base `  K
)  /\  w  e.  ( Base `  K )
)  ->  ( u
( .r `  K
) w )  e.  ( Base `  K
) )
3323, 24, 9, 32syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  e.  ( Base `  K ) )
3433, 6eleqtrrd 2373 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  e.  B )
3518proplem 13608 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) v )  e.  B  /\  (
u ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) v ) ( +g  `  L
) ( u ( .r `  K ) w ) ) )
361, 31, 34, 35syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  L ) ( u ( .r
`  K ) w ) ) )
3715proplem 13608 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( .r
`  K ) v )  =  ( u ( .r `  L
) v ) )
381, 2, 4, 37syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) v )  =  ( u ( .r `  L
) v ) )
3915proplem 13608 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  =  ( u ( .r `  L
) w ) )
401, 2, 8, 39syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  =  ( u ( .r `  L
) w ) )
4138, 40oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) v ) ( +g  `  L ) ( u ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) ) )
4236, 41eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) ) )
4322, 42eqeq12d 2310 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  <->  ( u
( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) ) )
4410, 11grpcl 14511 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Grp  /\  u  e.  ( Base `  K )  /\  v  e.  ( Base `  K
) )  ->  (
u ( +g  `  K
) v )  e.  ( Base `  K
) )
453, 24, 7, 44syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( +g  `  K ) v )  e.  ( Base `  K
) )
4645, 6eleqtrrd 2373 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( +g  `  K ) v )  e.  B )
4715proplem 13608 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( +g  `  K
) v )  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  K
) v ) ( .r `  L ) w ) )
481, 46, 8, 47syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  K
) v ) ( .r `  L ) w ) )
4918proplem 13608 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
501, 2, 4, 49syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
5150oveq1d 5889 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  L ) w )  =  ( ( u ( +g  `  L
) v ) ( .r `  L ) w ) )
5248, 51eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  L
) v ) ( .r `  L ) w ) )
5326, 28mndcl 14388 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  v  e.  ( Base `  K
)  /\  w  e.  ( Base `  K )
)  ->  ( v
( .r `  K
) w )  e.  ( Base `  K
) )
5423, 7, 9, 53syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  e.  ( Base `  K ) )
5554, 6eleqtrrd 2373 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  e.  B )
5618proplem 13608 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) w )  e.  B  /\  (
v ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) w ) ( +g  `  K ) ( v ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) w ) ( +g  `  L
) ( v ( .r `  K ) w ) ) )
571, 34, 55, 56syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) )  =  ( ( u ( .r `  K
) w ) ( +g  `  L ) ( v ( .r
`  K ) w ) ) )
5815proplem 13608 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  =  ( v ( .r `  L
) w ) )
591, 4, 8, 58syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  =  ( v ( .r `  L
) w ) )
6040, 59oveq12d 5892 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) w ) ( +g  `  L ) ( v ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) w ) ( +g  `  L ) ( v ( .r
`  L ) w ) ) )
6157, 60eqtrd 2328 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) w ) ( +g  `  L ) ( v ( .r
`  L ) w ) ) )
6252, 61eqeq12d 2310 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  <->  ( (
u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )
6343, 62anbi12d 691 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
6463anassrs 629 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  ( u  e.  B  /\  v  e.  B
) )  /\  w  e.  B )  ->  (
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
6564ralbidva 2572 . . . . . . 7  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  ( A. w  e.  B  (
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) )  <->  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
66652ralbidva 2596 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
675adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  B  =  ( Base `  K
) )
6867raleqdv 2755 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. w  e.  ( Base `  K ) ( ( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
6967, 68raleqbidv 2761 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
7067, 69raleqbidv 2761 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
71 rngpropd.2 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  L ) )
7271adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  B  =  ( Base `  L
) )
7372raleqdv 2755 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. w  e.  ( Base `  L ) ( ( u ( .r
`  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
7472, 73raleqbidv 2761 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
7572, 74raleqbidv 2761 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
7666, 70, 753bitr3d 274 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
7776pm5.32da 622 . . . 4  |-  ( ph  ->  ( ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
78 df-3an 936 . . . 4  |-  ( ( K  e.  Grp  /\  (mulGrp `  K )  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
79 df-3an 936 . . . 4  |-  ( ( K  e.  Grp  /\  (mulGrp `  K )  e. 
Mnd  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
8077, 78, 793bitr4g 279 . . 3  |-  ( ph  ->  ( ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
815, 71, 18grppropd 14516 . . . 4  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
825, 26syl6eq 2344 . . . . 5  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  K )
) )
83 eqid 2296 . . . . . . 7  |-  (mulGrp `  L )  =  (mulGrp `  L )
84 eqid 2296 . . . . . . 7  |-  ( Base `  L )  =  (
Base `  L )
8583, 84mgpbas 15347 . . . . . 6  |-  ( Base `  L )  =  (
Base `  (mulGrp `  L
) )
8671, 85syl6eq 2344 . . . . 5  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
8728oveqi 5887 . . . . . 6  |-  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y )
88 eqid 2296 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
8983, 88mgpplusg 15345 . . . . . . 7  |-  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) )
9089oveqi 5887 . . . . . 6  |-  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y )
9115, 87, 903eqtr3g 2351 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
9282, 86, 91mndpropd 14414 . . . 4  |-  ( ph  ->  ( (mulGrp `  K
)  e.  Mnd  <->  (mulGrp `  L
)  e.  Mnd )
)
9381, 923anbi12d 1253 . . 3  |-  ( ph  ->  ( ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Grp  /\  (mulGrp `  L
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
9480, 93bitrd 244 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( L  e. 
Grp  /\  (mulGrp `  L
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
9510, 25, 11, 27isrng 15361 . 2  |-  ( K  e.  Ring  <->  ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
96 eqid 2296 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
9784, 83, 96, 88isrng 15361 . 2  |-  ( L  e.  Ring  <->  ( L  e. 
Grp  /\  (mulGrp `  L
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
9894, 95, 973bitr4g 279 1  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   A.wral 2556   ` cfv 5271  (class class class)co 5874   Basecbs 13164   +g cplusg 13224   .rcmulr 13225   Mndcmnd 14377   Grpcgrp 14378  mulGrpcmgp 15341   Ringcrg 15353
This theorem is referenced by:  crngpropd  15389  rngprop  15390  opprrngb  15430  drngpropd  15555  subrgpropd  15595  rhmpropd  15596  abvpropd  15623  lmodprop2d  15703  sraassa  16081  assapropd  16083  subrgpsr  16179  opsrrng  16339
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-riota 6320  df-recs 6404  df-rdg 6439  df-er 6676  df-en 6880  df-dom 6881  df-sdom 6882  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-nn 9763  df-2 9820  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-plusg 13237  df-0g 13420  df-mnd 14383  df-grp 14505  df-mgp 15342  df-rng 15356
  Copyright terms: Public domain W3C validator