MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngpropd Unicode version

Theorem rngpropd 15372
Description: If two structures have the same group components (properties), one is a ring iff the other one is. (Contributed by Mario Carneiro, 6-Dec-2014.) (Revised by Mario Carneiro, 6-Jan-2015.)
Hypotheses
Ref Expression
rngpropd.1  |-  ( ph  ->  B  =  ( Base `  K ) )
rngpropd.2  |-  ( ph  ->  B  =  ( Base `  L ) )
rngpropd.3  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
rngpropd.4  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
Assertion
Ref Expression
rngpropd  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
Distinct variable groups:    x, y, B    x, K, y    ph, x, y    x, L, y

Proof of Theorem rngpropd
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  ph )
2 simprll 738 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  u  e.  B )
3 simplrl 736 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  K  e.  Grp )
4 simprlr 739 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
v  e.  B )
5 rngpropd.1 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  B  =  ( Base `  K ) )
65ad2antrr 706 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  B  =  ( Base `  K ) )
74, 6eleqtrd 2359 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
v  e.  ( Base `  K ) )
8 simprr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  w  e.  B )
98, 6eleqtrd 2359 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  w  e.  ( Base `  K ) )
10 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( Base `  K )  =  (
Base `  K )
11 eqid 2283 . . . . . . . . . . . . . . . 16  |-  ( +g  `  K )  =  ( +g  `  K )
1210, 11grpcl 14495 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Grp  /\  v  e.  ( Base `  K )  /\  w  e.  ( Base `  K
) )  ->  (
v ( +g  `  K
) w )  e.  ( Base `  K
) )
133, 7, 9, 12syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  e.  ( Base `  K
) )
1413, 6eleqtrrd 2360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  e.  B )
15 rngpropd.4 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( .r
`  K ) y )  =  ( x ( .r `  L
) y ) )
1615proplem 13592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( u  e.  B  /\  (
v ( +g  `  K
) w )  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
171, 2, 14, 16syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  K ) w ) ) )
18 rngpropd.3 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  K ) y )  =  ( x ( +g  `  L ) y ) )
1918proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
201, 4, 8, 19syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( +g  `  K ) w )  =  ( v ( +g  `  L ) w ) )
2120oveq2d 5874 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  L ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
2217, 21eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( u ( .r `  L ) ( v ( +g  `  L ) w ) ) )
23 simplrr 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
(mulGrp `  K )  e.  Mnd )
242, 6eleqtrd 2359 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  ->  u  e.  ( Base `  K ) )
25 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  (mulGrp `  K )  =  (mulGrp `  K )
2625, 10mgpbas 15331 . . . . . . . . . . . . . . . 16  |-  ( Base `  K )  =  (
Base `  (mulGrp `  K
) )
27 eqid 2283 . . . . . . . . . . . . . . . . 17  |-  ( .r
`  K )  =  ( .r `  K
)
2825, 27mgpplusg 15329 . . . . . . . . . . . . . . . 16  |-  ( .r
`  K )  =  ( +g  `  (mulGrp `  K ) )
2926, 28mndcl 14372 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  u  e.  ( Base `  K
)  /\  v  e.  ( Base `  K )
)  ->  ( u
( .r `  K
) v )  e.  ( Base `  K
) )
3023, 24, 7, 29syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) v )  e.  ( Base `  K ) )
3130, 6eleqtrrd 2360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) v )  e.  B )
3226, 28mndcl 14372 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  u  e.  ( Base `  K
)  /\  w  e.  ( Base `  K )
)  ->  ( u
( .r `  K
) w )  e.  ( Base `  K
) )
3323, 24, 9, 32syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  e.  ( Base `  K ) )
3433, 6eleqtrrd 2360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  e.  B )
3518proplem 13592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) v )  e.  B  /\  (
u ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) v ) ( +g  `  L
) ( u ( .r `  K ) w ) ) )
361, 31, 34, 35syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  L ) ( u ( .r
`  K ) w ) ) )
3715proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( .r
`  K ) v )  =  ( u ( .r `  L
) v ) )
381, 2, 4, 37syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) v )  =  ( u ( .r `  L
) v ) )
3915proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  =  ( u ( .r `  L
) w ) )
401, 2, 8, 39syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( .r
`  K ) w )  =  ( u ( .r `  L
) w ) )
4138, 40oveq12d 5876 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) v ) ( +g  `  L ) ( u ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) ) )
4236, 41eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) ) )
4322, 42eqeq12d 2297 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  <->  ( u
( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) ) ) )
4410, 11grpcl 14495 . . . . . . . . . . . . . . 15  |-  ( ( K  e.  Grp  /\  u  e.  ( Base `  K )  /\  v  e.  ( Base `  K
) )  ->  (
u ( +g  `  K
) v )  e.  ( Base `  K
) )
453, 24, 7, 44syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( +g  `  K ) v )  e.  ( Base `  K
) )
4645, 6eleqtrrd 2360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( +g  `  K ) v )  e.  B )
4715proplem 13592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( +g  `  K
) v )  e.  B  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  K
) v ) ( .r `  L ) w ) )
481, 46, 8, 47syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  K
) v ) ( .r `  L ) w ) )
4918proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( u  e.  B  /\  v  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
501, 2, 4, 49syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( u ( +g  `  K ) v )  =  ( u ( +g  `  L ) v ) )
5150oveq1d 5873 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  L ) w )  =  ( ( u ( +g  `  L
) v ) ( .r `  L ) w ) )
5248, 51eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( +g  `  L
) v ) ( .r `  L ) w ) )
5326, 28mndcl 14372 . . . . . . . . . . . . . . 15  |-  ( ( (mulGrp `  K )  e.  Mnd  /\  v  e.  ( Base `  K
)  /\  w  e.  ( Base `  K )
)  ->  ( v
( .r `  K
) w )  e.  ( Base `  K
) )
5423, 7, 9, 53syl3anc 1182 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  e.  ( Base `  K ) )
5554, 6eleqtrrd 2360 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  e.  B )
5618proplem 13592 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( (
u ( .r `  K ) w )  e.  B  /\  (
v ( .r `  K ) w )  e.  B ) )  ->  ( ( u ( .r `  K
) w ) ( +g  `  K ) ( v ( .r
`  K ) w ) )  =  ( ( u ( .r
`  K ) w ) ( +g  `  L
) ( v ( .r `  K ) w ) ) )
571, 34, 55, 56syl12anc 1180 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) )  =  ( ( u ( .r `  K
) w ) ( +g  `  L ) ( v ( .r
`  K ) w ) ) )
5815proplem 13592 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( v  e.  B  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  =  ( v ( .r `  L
) w ) )
591, 4, 8, 58syl12anc 1180 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( v ( .r
`  K ) w )  =  ( v ( .r `  L
) w ) )
6040, 59oveq12d 5876 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) w ) ( +g  `  L ) ( v ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) w ) ( +g  `  L ) ( v ( .r
`  L ) w ) ) )
6157, 60eqtrd 2315 . . . . . . . . . . 11  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) )  =  ( ( u ( .r `  L
) w ) ( +g  `  L ) ( v ( .r
`  L ) w ) ) )
6252, 61eqeq12d 2297 . . . . . . . . . 10  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) )  <->  ( (
u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )
6343, 62anbi12d 691 . . . . . . . . 9  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
( u  e.  B  /\  v  e.  B
)  /\  w  e.  B ) )  -> 
( ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
6463anassrs 629 . . . . . . . 8  |-  ( ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  ( u  e.  B  /\  v  e.  B
) )  /\  w  e.  B )  ->  (
( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <-> 
( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
6564ralbidva 2559 . . . . . . 7  |-  ( ( ( ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  /\  (
u  e.  B  /\  v  e.  B )
)  ->  ( A. w  e.  B  (
( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) )  <->  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
66652ralbidva 2583 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
675adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  B  =  ( Base `  K
) )
6867raleqdv 2742 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. w  e.  ( Base `  K ) ( ( u ( .r
`  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
6967, 68raleqbidv 2748 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K ) ( ( u ( .r `  K ) ( v ( +g  `  K
) w ) )  =  ( ( u ( .r `  K
) v ) ( +g  `  K ) ( u ( .r
`  K ) w ) )  /\  (
( u ( +g  `  K ) v ) ( .r `  K
) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K ) ( v ( .r `  K
) w ) ) ) ) )
7067, 69raleqbidv 2748 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  K ) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K
) ( u ( .r `  K ) w ) )  /\  ( ( u ( +g  `  K ) v ) ( .r
`  K ) w )  =  ( ( u ( .r `  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
71 rngpropd.2 . . . . . . . 8  |-  ( ph  ->  B  =  ( Base `  L ) )
7271adantr 451 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  B  =  ( Base `  L
) )
7372raleqdv 2742 . . . . . . . 8  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. w  e.  ( Base `  L ) ( ( u ( .r
`  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
7472, 73raleqbidv 2748 . . . . . . 7  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L ) ( ( u ( .r `  L ) ( v ( +g  `  L
) w ) )  =  ( ( u ( .r `  L
) v ) ( +g  `  L ) ( u ( .r
`  L ) w ) )  /\  (
( u ( +g  `  L ) v ) ( .r `  L
) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L ) ( v ( .r `  L
) w ) ) ) ) )
7572, 74raleqbidv 2748 . . . . . 6  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  B  A. v  e.  B  A. w  e.  B  ( ( u ( .r `  L ) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L
) ( u ( .r `  L ) w ) )  /\  ( ( u ( +g  `  L ) v ) ( .r
`  L ) w )  =  ( ( u ( .r `  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
7666, 70, 753bitr3d 274 . . . . 5  |-  ( (
ph  /\  ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd ) )  ->  ( A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K ) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) )  <->  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L ) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
7776pm5.32da 622 . . . 4  |-  ( ph  ->  ( ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
78 df-3an 936 . . . 4  |-  ( ( K  e.  Grp  /\  (mulGrp `  K )  e. 
Mnd  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  K
) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
79 df-3an 936 . . . 4  |-  ( ( K  e.  Grp  /\  (mulGrp `  K )  e. 
Mnd  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( ( K  e.  Grp  /\  (mulGrp `  K )  e.  Mnd )  /\  A. u  e.  ( Base `  L
) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
8077, 78, 793bitr4g 279 . . 3  |-  ( ph  ->  ( ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
815, 71, 18grppropd 14500 . . . 4  |-  ( ph  ->  ( K  e.  Grp  <->  L  e.  Grp ) )
825, 26syl6eq 2331 . . . . 5  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  K )
) )
83 eqid 2283 . . . . . . 7  |-  (mulGrp `  L )  =  (mulGrp `  L )
84 eqid 2283 . . . . . . 7  |-  ( Base `  L )  =  (
Base `  L )
8583, 84mgpbas 15331 . . . . . 6  |-  ( Base `  L )  =  (
Base `  (mulGrp `  L
) )
8671, 85syl6eq 2331 . . . . 5  |-  ( ph  ->  B  =  ( Base `  (mulGrp `  L )
) )
8728oveqi 5871 . . . . . 6  |-  ( x ( .r `  K
) y )  =  ( x ( +g  `  (mulGrp `  K )
) y )
88 eqid 2283 . . . . . . . 8  |-  ( .r
`  L )  =  ( .r `  L
)
8983, 88mgpplusg 15329 . . . . . . 7  |-  ( .r
`  L )  =  ( +g  `  (mulGrp `  L ) )
9089oveqi 5871 . . . . . 6  |-  ( x ( .r `  L
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y )
9115, 87, 903eqtr3g 2338 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x ( +g  `  (mulGrp `  K )
) y )  =  ( x ( +g  `  (mulGrp `  L )
) y ) )
9282, 86, 91mndpropd 14398 . . . 4  |-  ( ph  ->  ( (mulGrp `  K
)  e.  Mnd  <->  (mulGrp `  L
)  e.  Mnd )
)
9381, 923anbi12d 1253 . . 3  |-  ( ph  ->  ( ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) )  <->  ( L  e. 
Grp  /\  (mulGrp `  L
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
9480, 93bitrd 244 . 2  |-  ( ph  ->  ( ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) )  <->  ( L  e. 
Grp  /\  (mulGrp `  L
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) ) )
9510, 25, 11, 27isrng 15345 . 2  |-  ( K  e.  Ring  <->  ( K  e. 
Grp  /\  (mulGrp `  K
)  e.  Mnd  /\  A. u  e.  ( Base `  K ) A. v  e.  ( Base `  K
) A. w  e.  ( Base `  K
) ( ( u ( .r `  K
) ( v ( +g  `  K ) w ) )  =  ( ( u ( .r `  K ) v ) ( +g  `  K ) ( u ( .r `  K
) w ) )  /\  ( ( u ( +g  `  K
) v ) ( .r `  K ) w )  =  ( ( u ( .r
`  K ) w ) ( +g  `  K
) ( v ( .r `  K ) w ) ) ) ) )
96 eqid 2283 . . 3  |-  ( +g  `  L )  =  ( +g  `  L )
9784, 83, 96, 88isrng 15345 . 2  |-  ( L  e.  Ring  <->  ( L  e. 
Grp  /\  (mulGrp `  L
)  e.  Mnd  /\  A. u  e.  ( Base `  L ) A. v  e.  ( Base `  L
) A. w  e.  ( Base `  L
) ( ( u ( .r `  L
) ( v ( +g  `  L ) w ) )  =  ( ( u ( .r `  L ) v ) ( +g  `  L ) ( u ( .r `  L
) w ) )  /\  ( ( u ( +g  `  L
) v ) ( .r `  L ) w )  =  ( ( u ( .r
`  L ) w ) ( +g  `  L
) ( v ( .r `  L ) w ) ) ) ) )
9894, 95, 973bitr4g 279 1  |-  ( ph  ->  ( K  e.  Ring  <->  L  e.  Ring ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684   A.wral 2543   ` cfv 5255  (class class class)co 5858   Basecbs 13148   +g cplusg 13208   .rcmulr 13209   Mndcmnd 14361   Grpcgrp 14362  mulGrpcmgp 15325   Ringcrg 15337
This theorem is referenced by:  crngpropd  15373  rngprop  15374  opprrngb  15414  drngpropd  15539  subrgpropd  15579  rhmpropd  15580  abvpropd  15607  lmodprop2d  15687  sraassa  16065  assapropd  16067  subrgpsr  16163  opsrrng  16323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-riota 6304  df-recs 6388  df-rdg 6423  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-nn 9747  df-2 9804  df-ndx 13151  df-slot 13152  df-base 13153  df-sets 13154  df-plusg 13221  df-0g 13404  df-mnd 14367  df-grp 14489  df-mgp 15326  df-rng 15340
  Copyright terms: Public domain W3C validator