MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngrz Unicode version

Theorem rngrz 15656
Description: The zero of a unital ring is a right absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b  |-  B  =  ( Base `  R
)
rngz.t  |-  .x.  =  ( .r `  R )
rngz.z  |-  .0.  =  ( 0g `  R )
Assertion
Ref Expression
rngrz  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )

Proof of Theorem rngrz
StepHypRef Expression
1 rnggrp 15624 . . . . . 6  |-  ( R  e.  Ring  ->  R  e. 
Grp )
2 rngz.b . . . . . . . 8  |-  B  =  ( Base `  R
)
3 rngz.z . . . . . . . 8  |-  .0.  =  ( 0g `  R )
42, 3grpidcl 14788 . . . . . . 7  |-  ( R  e.  Grp  ->  .0.  e.  B )
5 eqid 2404 . . . . . . . 8  |-  ( +g  `  R )  =  ( +g  `  R )
62, 5, 3grplid 14790 . . . . . . 7  |-  ( ( R  e.  Grp  /\  .0.  e.  B )  -> 
(  .0.  ( +g  `  R )  .0.  )  =  .0.  )
74, 6mpdan 650 . . . . . 6  |-  ( R  e.  Grp  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
81, 7syl 16 . . . . 5  |-  ( R  e.  Ring  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
98adantr 452 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (  .0.  ( +g  `  R
)  .0.  )  =  .0.  )
109oveq2d 6056 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( X  .x.  .0.  )
)
11 simpr 448 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  X  e.  B )
121, 4syl 16 . . . . . 6  |-  ( R  e.  Ring  ->  .0.  e.  B )
1312adantr 452 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  .0.  e.  B )
1411, 13, 133jca 1134 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )
15 rngz.t . . . . 5  |-  .x.  =  ( .r `  R )
162, 5, 15rngdi 15637 . . . 4  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  .0.  e.  B  /\  .0.  e.  B ) )  -> 
( X  .x.  (  .0.  ( +g  `  R
)  .0.  ) )  =  ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
) )
1714, 16syldan 457 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  (  .0.  ( +g  `  R )  .0.  ) )  =  ( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) ) )
181adantr 452 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  R  e.  Grp )
192, 15rngcl 15632 . . . . 5  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  .0.  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
2013, 19mpd3an3 1280 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  e.  B )
212, 5, 3grplid 14790 . . . . 5  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  =  ( X  .x.  .0.  )
)
2221eqcomd 2409 . . . 4  |-  ( ( R  e.  Grp  /\  ( X  .x.  .0.  )  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2318, 20, 22syl2anc 643 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  (  .0.  ( +g  `  R ) ( X 
.x.  .0.  ) )
)
2410, 17, 233eqtr3d 2444 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) ) )
252, 5grprcan 14793 . . 3  |-  ( ( R  e.  Grp  /\  ( ( X  .x.  .0.  )  e.  B  /\  .0.  e.  B  /\  ( X  .x.  .0.  )  e.  B ) )  -> 
( ( ( X 
.x.  .0.  ) ( +g  `  R ) ( X  .x.  .0.  )
)  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2618, 20, 13, 20, 25syl13anc 1186 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  (
( ( X  .x.  .0.  ) ( +g  `  R
) ( X  .x.  .0.  ) )  =  (  .0.  ( +g  `  R
) ( X  .x.  .0.  ) )  <->  ( X  .x.  .0.  )  =  .0.  ) )
2724, 26mpbid 202 1  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  .0.  )  =  .0.  )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   ` cfv 5413  (class class class)co 6040   Basecbs 13424   +g cplusg 13484   .rcmulr 13485   0gc0g 13678   Grpcgrp 14640   Ringcrg 15615
This theorem is referenced by:  rngnegr  15659  gsumdixp  15670  dvdsr02  15716  isdrng2  15800  drngmul0or  15811  cntzsubr  15855  isabvd  15863  lmodvs0  15939  rrgeq0  16305  unitrrg  16308  domneq0  16312  psrridm  16423  mpllsslem  16454  mplsubrglem  16457  mplcoe1  16483  mplmon2  16508  evlslem4  16519  coe1tmmul2  16623  ocvlss  16854  mdegvscale  19951  mdegmullem  19954  coe1mul3  19975  deg1mul3le  19992  ply1divex  20012  ply1rem  20039  fta1blem  20044  kerunit  24214  uvcresum  27110  mamurid  27327  cntzsdrg  27378  lfl0f  29552  lfl0sc  29565  lkrlss  29578  lcfrlem33  32058  hdmapinvlem3  32406  hdmapglem7b  32414
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-riota 6508  df-recs 6592  df-rdg 6627  df-er 6864  df-en 7069  df-dom 7070  df-sdom 7071  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-plusg 13497  df-0g 13682  df-mnd 14645  df-grp 14767  df-mgp 15604  df-rng 15618
  Copyright terms: Public domain W3C validator