MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngstr Unicode version

Theorem rngstr 13352
Description: A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
rngfn.r  |-  R  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
Assertion
Ref Expression
rngstr  |-  R Struct  <. 1 ,  3 >.

Proof of Theorem rngstr
StepHypRef Expression
1 rngfn.r . 2  |-  R  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
2 1nn 9847 . . 3  |-  1  e.  NN
3 basendx 13290 . . 3  |-  ( Base `  ndx )  =  1
4 1lt2 9978 . . 3  |-  1  <  2
5 2nn 9969 . . 3  |-  2  e.  NN
6 plusgndx 13339 . . 3  |-  ( +g  ` 
ndx )  =  2
7 2lt3 9979 . . 3  |-  2  <  3
8 3nn 9970 . . 3  |-  3  e.  NN
9 mulrndx 13350 . . 3  |-  ( .r
`  ndx )  =  3
102, 3, 4, 5, 6, 7, 8, 9strle3 13338 . 2  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. } Struct  <. 1 ,  3 >.
111, 10eqbrtri 4123 1  |-  R Struct  <. 1 ,  3 >.
Colors of variables: wff set class
Syntax hints:    = wceq 1642   {ctp 3718   <.cop 3719   class class class wbr 4104   ` cfv 5337   1c1 8828   2c2 9885   3c3 9886   Struct cstr 13241   ndxcnx 13242   Basecbs 13245   +g cplusg 13305   .rcmulr 13306
This theorem is referenced by:  rngbase  13353  rngplusg  13354  rngmulr  13355  srngfn  13360  algstr  13374  odrngstr  13410  psrvalstr  16210
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pow 4269  ax-pr 4295  ax-un 4594  ax-cnex 8883  ax-resscn 8884  ax-1cn 8885  ax-icn 8886  ax-addcl 8887  ax-addrcl 8888  ax-mulcl 8889  ax-mulrcl 8890  ax-mulcom 8891  ax-addass 8892  ax-mulass 8893  ax-distr 8894  ax-i2m1 8895  ax-1ne0 8896  ax-1rid 8897  ax-rnegex 8898  ax-rrecex 8899  ax-cnre 8900  ax-pre-lttri 8901  ax-pre-lttrn 8902  ax-pre-ltadd 8903  ax-pre-mulgt0 8904
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3909  df-int 3944  df-iun 3988  df-br 4105  df-opab 4159  df-mpt 4160  df-tr 4195  df-eprel 4387  df-id 4391  df-po 4396  df-so 4397  df-fr 4434  df-we 4436  df-ord 4477  df-on 4478  df-lim 4479  df-suc 4480  df-om 4739  df-xp 4777  df-rel 4778  df-cnv 4779  df-co 4780  df-dm 4781  df-rn 4782  df-res 4783  df-ima 4784  df-iota 5301  df-fun 5339  df-fn 5340  df-f 5341  df-f1 5342  df-fo 5343  df-f1o 5344  df-fv 5345  df-ov 5948  df-oprab 5949  df-mpt2 5950  df-1st 6209  df-2nd 6210  df-riota 6391  df-recs 6475  df-rdg 6510  df-1o 6566  df-oadd 6570  df-er 6747  df-en 6952  df-dom 6953  df-sdom 6954  df-fin 6955  df-pnf 8959  df-mnf 8960  df-xr 8961  df-ltxr 8962  df-le 8963  df-sub 9129  df-neg 9130  df-nn 9837  df-2 9894  df-3 9895  df-n0 10058  df-z 10117  df-uz 10323  df-fz 10875  df-struct 13247  df-ndx 13248  df-slot 13249  df-base 13250  df-plusg 13318  df-mulr 13319
  Copyright terms: Public domain W3C validator