MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rngstr Structured version   Unicode version

Theorem rngstr 13607
Description: A constructed ring is a structure. (Contributed by Mario Carneiro, 28-Sep-2013.) (Revised by Mario Carneiro, 29-Aug-2015.)
Hypothesis
Ref Expression
rngfn.r  |-  R  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
Assertion
Ref Expression
rngstr  |-  R Struct  <. 1 ,  3 >.

Proof of Theorem rngstr
StepHypRef Expression
1 rngfn.r . 2  |-  R  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. ,  <. ( .r `  ndx ) ,  .x.  >. }
2 1nn 10042 . . 3  |-  1  e.  NN
3 basendx 13545 . . 3  |-  ( Base `  ndx )  =  1
4 1lt2 10173 . . 3  |-  1  <  2
5 2nn 10164 . . 3  |-  2  e.  NN
6 plusgndx 13594 . . 3  |-  ( +g  ` 
ndx )  =  2
7 2lt3 10174 . . 3  |-  2  <  3
8 3nn 10165 . . 3  |-  3  e.  NN
9 mulrndx 13605 . . 3  |-  ( .r
`  ndx )  =  3
102, 3, 4, 5, 6, 7, 8, 9strle3 13593 . 2  |-  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. ,  <. ( .r `  ndx ) , 
.x.  >. } Struct  <. 1 ,  3 >.
111, 10eqbrtri 4256 1  |-  R Struct  <. 1 ,  3 >.
Colors of variables: wff set class
Syntax hints:    = wceq 1653   {ctp 3840   <.cop 3841   class class class wbr 4237   ` cfv 5483   1c1 9022   2c2 10080   3c3 10081   Struct cstr 13496   ndxcnx 13497   Basecbs 13500   +g cplusg 13560   .rcmulr 13561
This theorem is referenced by:  rngbase  13608  rngplusg  13609  rngmulr  13610  srngfn  13615  algstr  13629  odrngstr  13665  psrvalstr  16461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-13 1729  ax-14 1731  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423  ax-sep 4355  ax-nul 4363  ax-pow 4406  ax-pr 4432  ax-un 4730  ax-cnex 9077  ax-resscn 9078  ax-1cn 9079  ax-icn 9080  ax-addcl 9081  ax-addrcl 9082  ax-mulcl 9083  ax-mulrcl 9084  ax-mulcom 9085  ax-addass 9086  ax-mulass 9087  ax-distr 9088  ax-i2m1 9089  ax-1ne0 9090  ax-1rid 9091  ax-rnegex 9092  ax-rrecex 9093  ax-cnre 9094  ax-pre-lttri 9095  ax-pre-lttrn 9096  ax-pre-ltadd 9097  ax-pre-mulgt0 9098
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2291  df-mo 2292  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-nel 2608  df-ral 2716  df-rex 2717  df-reu 2718  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-pss 3322  df-nul 3614  df-if 3764  df-pw 3825  df-sn 3844  df-pr 3845  df-tp 3846  df-op 3847  df-uni 4040  df-int 4075  df-iun 4119  df-br 4238  df-opab 4292  df-mpt 4293  df-tr 4328  df-eprel 4523  df-id 4527  df-po 4532  df-so 4533  df-fr 4570  df-we 4572  df-ord 4613  df-on 4614  df-lim 4615  df-suc 4616  df-om 4875  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-1st 6378  df-2nd 6379  df-riota 6578  df-recs 6662  df-rdg 6697  df-1o 6753  df-oadd 6757  df-er 6934  df-en 7139  df-dom 7140  df-sdom 7141  df-fin 7142  df-pnf 9153  df-mnf 9154  df-xr 9155  df-ltxr 9156  df-le 9157  df-sub 9324  df-neg 9325  df-nn 10032  df-2 10089  df-3 10090  df-n0 10253  df-z 10314  df-uz 10520  df-fz 11075  df-struct 13502  df-ndx 13503  df-slot 13504  df-base 13505  df-plusg 13573  df-mulr 13574
  Copyright terms: Public domain W3C validator