Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Unicode version

Theorem rngunsnply 27481
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b  |-  ( ph  ->  B  e.  (SubRing ` fld ) )
rngunsnply.x  |-  ( ph  ->  X  e.  CC )
rngunsnply.s  |-  ( ph  ->  S  =  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) )
Assertion
Ref Expression
rngunsnply  |-  ( ph  ->  ( V  e.  S  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X
) ) )
Distinct variable groups:    ph, p    B, p    X, p    V, p
Allowed substitution hint:    S( p)

Proof of Theorem rngunsnply
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3  |-  ( ph  ->  S  =  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) )
21eleq2d 2363 . 2  |-  ( ph  ->  ( V  e.  S  <->  V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) ) )
3 cnrng 16412 . . . . . . 7  |-fld  e.  Ring
43a1i 10 . . . . . 6  |-  ( ph  ->fld  e. 
Ring )
5 cnfldbas 16399 . . . . . . 7  |-  CC  =  ( Base ` fld )
65a1i 10 . . . . . 6  |-  ( ph  ->  CC  =  ( Base ` fld ) )
7 rngunsnply.b . . . . . . . 8  |-  ( ph  ->  B  e.  (SubRing ` fld ) )
85subrgss 15562 . . . . . . . 8  |-  ( B  e.  (SubRing ` fld )  ->  B  C_  CC )
97, 8syl 15 . . . . . . 7  |-  ( ph  ->  B  C_  CC )
10 rngunsnply.x . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
1110snssd 3776 . . . . . . 7  |-  ( ph  ->  { X }  C_  CC )
129, 11unssd 3364 . . . . . 6  |-  ( ph  ->  ( B  u.  { X } )  C_  CC )
13 eqidd 2297 . . . . . 6  |-  ( ph  ->  (RingSpan ` fld )  =  (RingSpan ` fld ) )
14 eqidd 2297 . . . . . 6  |-  ( ph  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  =  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
15 eqidd 2297 . . . . . . 7  |-  ( ph  ->  (flds  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  =  (flds  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) } ) )
16 cnfld0 16414 . . . . . . . 8  |-  0  =  ( 0g ` fld )
1716a1i 10 . . . . . . 7  |-  ( ph  ->  0  =  ( 0g
` fld
) )
18 cnfldadd 16400 . . . . . . . 8  |-  +  =  ( +g  ` fld )
1918a1i 10 . . . . . . 7  |-  ( ph  ->  +  =  ( +g  ` fld ) )
20 plyf 19596 . . . . . . . . . . . 12  |-  ( p  e.  (Poly `  B
)  ->  p : CC
--> CC )
21 ffvelrn 5679 . . . . . . . . . . . 12  |-  ( ( p : CC --> CC  /\  X  e.  CC )  ->  ( p `  X
)  e.  CC )
2220, 10, 21syl2anr 464 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( p `  X )  e.  CC )
23 eleq1 2356 . . . . . . . . . . 11  |-  ( a  =  ( p `  X )  ->  (
a  e.  CC  <->  ( p `  X )  e.  CC ) )
2422, 23syl5ibrcom 213 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( a  =  ( p `  X
)  ->  a  e.  CC ) )
2524rexlimdva 2680 . . . . . . . . 9  |-  ( ph  ->  ( E. p  e.  (Poly `  B )
a  =  ( p `
 X )  -> 
a  e.  CC ) )
2625ss2abdv 3259 . . . . . . . 8  |-  ( ph  ->  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) }  C_  { a  |  a  e.  CC } )
27 abid2 2413 . . . . . . . . 9  |-  { a  |  a  e.  CC }  =  CC
2827, 5eqtri 2316 . . . . . . . 8  |-  { a  |  a  e.  CC }  =  ( Base ` fld )
2926, 28syl6sseq 3237 . . . . . . 7  |-  ( ph  ->  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) }  C_  ( Base ` fld ) )
30 abid2 2413 . . . . . . . . 9  |-  { a  |  a  e.  B }  =  B
31 plyconst 19604 . . . . . . . . . . . . 13  |-  ( ( B  C_  CC  /\  a  e.  B )  ->  ( CC  X.  { a } )  e.  (Poly `  B ) )
329, 31sylan 457 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  ( CC  X.  { a } )  e.  (Poly `  B ) )
3310adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  CC )
34 vex 2804 . . . . . . . . . . . . . . 15  |-  a  e. 
_V
3534fvconst2 5745 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( CC  X.  {
a } ) `  X )  =  a )
3633, 35syl 15 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  B )  ->  (
( CC  X.  {
a } ) `  X )  =  a )
3736eqcomd 2301 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  a  =  ( ( CC 
X.  { a } ) `  X ) )
38 fveq1 5540 . . . . . . . . . . . . . 14  |-  ( p  =  ( CC  X.  { a } )  ->  ( p `  X )  =  ( ( CC  X.  {
a } ) `  X ) )
3938eqeq2d 2307 . . . . . . . . . . . . 13  |-  ( p  =  ( CC  X.  { a } )  ->  ( a  =  ( p `  X
)  <->  a  =  ( ( CC  X.  {
a } ) `  X ) ) )
4039rspcev 2897 . . . . . . . . . . . 12  |-  ( ( ( CC  X.  {
a } )  e.  (Poly `  B )  /\  a  =  (
( CC  X.  {
a } ) `  X ) )  ->  E. p  e.  (Poly `  B ) a  =  ( p `  X
) )
4132, 37, 40syl2anc 642 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) )
4241ex 423 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  B  ->  E. p  e.  (Poly `  B ) a  =  ( p `  X
) ) )
4342ss2abdv 3259 . . . . . . . . 9  |-  ( ph  ->  { a  |  a  e.  B }  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
4430, 43syl5eqssr 3236 . . . . . . . 8  |-  ( ph  ->  B  C_  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) } )
45 subrgsubg 15567 . . . . . . . . . 10  |-  ( B  e.  (SubRing ` fld )  ->  B  e.  (SubGrp ` fld ) )
467, 45syl 15 . . . . . . . . 9  |-  ( ph  ->  B  e.  (SubGrp ` fld )
)
4716subg0cl 14645 . . . . . . . . 9  |-  ( B  e.  (SubGrp ` fld )  ->  0  e.  B )
4846, 47syl 15 . . . . . . . 8  |-  ( ph  ->  0  e.  B )
4944, 48sseldd 3194 . . . . . . 7  |-  ( ph  ->  0  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
50 biid 227 . . . . . . . . 9  |-  ( ph  <->  ph )
51 vex 2804 . . . . . . . . . 10  |-  b  e. 
_V
52 eqeq1 2302 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
a  =  ( p `
 X )  <->  b  =  ( p `  X
) ) )
5352rexbidv 2577 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) b  =  ( p `  X
) ) )
54 fveq1 5540 . . . . . . . . . . . . 13  |-  ( p  =  e  ->  (
p `  X )  =  ( e `  X ) )
5554eqeq2d 2307 . . . . . . . . . . . 12  |-  ( p  =  e  ->  (
b  =  ( p `
 X )  <->  b  =  ( e `  X
) ) )
5655cbvrexv 2778 . . . . . . . . . . 11  |-  ( E. p  e.  (Poly `  B ) b  =  ( p `  X
)  <->  E. e  e.  (Poly `  B ) b  =  ( e `  X
) )
5753, 56syl6bb 252 . . . . . . . . . 10  |-  ( a  =  b  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. e  e.  (Poly `  B ) b  =  ( e `  X
) ) )
5851, 57elab 2927 . . . . . . . . 9  |-  ( b  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. e  e.  (Poly `  B )
b  =  ( e `
 X ) )
59 vex 2804 . . . . . . . . . 10  |-  c  e. 
_V
60 eqeq1 2302 . . . . . . . . . . . 12  |-  ( a  =  c  ->  (
a  =  ( p `
 X )  <->  c  =  ( p `  X
) ) )
6160rexbidv 2577 . . . . . . . . . . 11  |-  ( a  =  c  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) c  =  ( p `  X
) ) )
62 fveq1 5540 . . . . . . . . . . . . 13  |-  ( p  =  d  ->  (
p `  X )  =  ( d `  X ) )
6362eqeq2d 2307 . . . . . . . . . . . 12  |-  ( p  =  d  ->  (
c  =  ( p `
 X )  <->  c  =  ( d `  X
) ) )
6463cbvrexv 2778 . . . . . . . . . . 11  |-  ( E. p  e.  (Poly `  B ) c  =  ( p `  X
)  <->  E. d  e.  (Poly `  B ) c  =  ( d `  X
) )
6561, 64syl6bb 252 . . . . . . . . . 10  |-  ( a  =  c  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. d  e.  (Poly `  B ) c  =  ( d `  X
) ) )
6659, 65elab 2927 . . . . . . . . 9  |-  ( c  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. d  e.  (Poly `  B )
c  =  ( d `
 X ) )
67 simplr 731 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  e  e.  (Poly `  B ) )
68 simpr 447 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  d  e.  (Poly `  B ) )
6918subrgacl 15572 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  (SubRing ` fld )  /\  a  e.  B  /\  b  e.  B )  ->  (
a  +  b )  e.  B )
70693expb 1152 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  (SubRing ` fld )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a  +  b )  e.  B )
717, 70sylan 457 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  +  b )  e.  B )
7271adantlr 695 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  +  b )  e.  B )
7372adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  e  e.  (Poly `  B
) )  /\  d  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  +  b )  e.  B )
7467, 68, 73plyadd 19615 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( e  o F  +  d )  e.  (Poly `  B
) )
75 plyf 19596 . . . . . . . . . . . . . . . . . . 19  |-  ( e  e.  (Poly `  B
)  ->  e : CC
--> CC )
76 ffn 5405 . . . . . . . . . . . . . . . . . . 19  |-  ( e : CC --> CC  ->  e  Fn  CC )
7775, 76syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( e  e.  (Poly `  B
)  ->  e  Fn  CC )
7877ad2antlr 707 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  e  Fn  CC )
79 plyf 19596 . . . . . . . . . . . . . . . . . . 19  |-  ( d  e.  (Poly `  B
)  ->  d : CC
--> CC )
80 ffn 5405 . . . . . . . . . . . . . . . . . . 19  |-  ( d : CC --> CC  ->  d  Fn  CC )
8179, 80syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( d  e.  (Poly `  B
)  ->  d  Fn  CC )
8281adantl 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  d  Fn  CC )
83 cnex 8834 . . . . . . . . . . . . . . . . . 18  |-  CC  e.  _V
8483a1i 10 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  CC  e.  _V )
8510ad2antrr 706 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  X  e.  CC )
86 fnfvof 6106 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  Fn  CC  /\  d  Fn  CC )  /\  ( CC  e.  _V  /\  X  e.  CC ) )  ->  (
( e  o F  +  d ) `  X )  =  ( ( e `  X
)  +  ( d `
 X ) ) )
8778, 82, 84, 85, 86syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e  o F  +  d ) `  X )  =  ( ( e `
 X )  +  ( d `  X
) ) )
8887eqcomd 2301 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e `
 X )  +  ( d `  X
) )  =  ( ( e  o F  +  d ) `  X ) )
89 fveq1 5540 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( e  o F  +  d )  ->  ( p `  X )  =  ( ( e  o F  +  d ) `  X ) )
9089eqeq2d 2307 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( e  o F  +  d )  ->  ( ( ( e `  X )  +  ( d `  X ) )  =  ( p `  X
)  <->  ( ( e `
 X )  +  ( d `  X
) )  =  ( ( e  o F  +  d ) `  X ) ) )
9190rspcev 2897 . . . . . . . . . . . . . . 15  |-  ( ( ( e  o F  +  d )  e.  (Poly `  B )  /\  ( ( e `  X )  +  ( d `  X ) )  =  ( ( e  o F  +  d ) `  X
) )  ->  E. p  e.  (Poly `  B )
( ( e `  X )  +  ( d `  X ) )  =  ( p `
 X ) )
9274, 88, 91syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  ( d `  X ) )  =  ( p `  X
) )
93 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( d `  X )  ->  (
( e `  X
)  +  c )  =  ( ( e `
 X )  +  ( d `  X
) ) )
9493eqeq1d 2304 . . . . . . . . . . . . . . 15  |-  ( c  =  ( d `  X )  ->  (
( ( e `  X )  +  c )  =  ( p `
 X )  <->  ( (
e `  X )  +  ( d `  X ) )  =  ( p `  X
) ) )
9594rexbidv 2577 . . . . . . . . . . . . . 14  |-  ( c  =  ( d `  X )  ->  ( E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  ( d `  X ) )  =  ( p `  X
) ) )
9692, 95syl5ibrcom 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( c  =  ( d `  X
)  ->  E. p  e.  (Poly `  B )
( ( e `  X )  +  c )  =  ( p `
 X ) ) )
9796rexlimdva 2680 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
) ) )
98 oveq1 5881 . . . . . . . . . . . . . . 15  |-  ( b  =  ( e `  X )  ->  (
b  +  c )  =  ( ( e `
 X )  +  c ) )
9998eqeq1d 2304 . . . . . . . . . . . . . 14  |-  ( b  =  ( e `  X )  ->  (
( b  +  c )  =  ( p `
 X )  <->  ( (
e `  X )  +  c )  =  ( p `  X
) ) )
10099rexbidv 2577 . . . . . . . . . . . . 13  |-  ( b  =  ( e `  X )  ->  ( E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
) ) )
101100imbi2d 307 . . . . . . . . . . . 12  |-  ( b  =  ( e `  X )  ->  (
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) )  <->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
) ) ) )
10297, 101syl5ibrcom 213 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( b  =  ( e `  X
)  ->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) ) ) )
103102rexlimdva 2680 . . . . . . . . . 10  |-  ( ph  ->  ( E. e  e.  (Poly `  B )
b  =  ( e `
 X )  -> 
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) ) ) )
1041033imp 1145 . . . . . . . . 9  |-  ( (
ph  /\  E. e  e.  (Poly `  B )
b  =  ( e `
 X )  /\  E. d  e.  (Poly `  B ) c  =  ( d `  X
) )  ->  E. p  e.  (Poly `  B )
( b  +  c )  =  ( p `
 X ) )
10550, 58, 66, 104syl3anb 1225 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  E. p  e.  (Poly `  B )
( b  +  c )  =  ( p `
 X ) )
106 ovex 5899 . . . . . . . . 9  |-  ( b  +  c )  e. 
_V
107 eqeq1 2302 . . . . . . . . . 10  |-  ( a  =  ( b  +  c )  ->  (
a  =  ( p `
 X )  <->  ( b  +  c )  =  ( p `  X
) ) )
108107rexbidv 2577 . . . . . . . . 9  |-  ( a  =  ( b  +  c )  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) ) )
109106, 108elab 2927 . . . . . . . 8  |-  ( ( b  +  c )  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B )
( b  +  c )  =  ( p `
 X ) )
110105, 109sylibr 203 . . . . . . 7  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  ( b  +  c )  e. 
{ a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) } )
111 ax-1cn 8811 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
112 cnfldneg 16416 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  CC  ->  (
( inv g ` fld ) `  1 )  = 
-u 1 )
113111, 112mp1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( inv g ` fld ) `  1 )  =  -u 1 )
114 cnfld1 16415 . . . . . . . . . . . . . . . . . . . 20  |-  1  =  ( 1r ` fld )
115114subrg1cl 15569 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  (SubRing ` fld )  ->  1  e.  B )
1167, 115syl 15 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  B )
117 eqid 2296 . . . . . . . . . . . . . . . . . . 19  |-  ( inv g ` fld )  =  ( inv g ` fld )
118117subginvcl 14646 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  (SubGrp ` fld )  /\  1  e.  B
)  ->  ( ( inv g ` fld ) `  1 )  e.  B )
11946, 116, 118syl2anc 642 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( inv g ` fld ) `  1 )  e.  B )
120113, 119eqeltrrd 2371 . . . . . . . . . . . . . . . 16  |-  ( ph  -> 
-u 1  e.  B
)
121 plyconst 19604 . . . . . . . . . . . . . . . 16  |-  ( ( B  C_  CC  /\  -u 1  e.  B )  ->  ( CC  X.  { -u 1 } )  e.  (Poly `  B ) )
1229, 120, 121syl2anc 642 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  X.  { -u 1 } )  e.  (Poly `  B )
)
123122adantr 451 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( CC  X.  { -u 1 } )  e.  (Poly `  B
) )
124 simpr 447 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  e  e.  (Poly `  B ) )
125 cnfldmul 16401 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
126125subrgmcl 15573 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  (SubRing ` fld )  /\  a  e.  B  /\  b  e.  B )  ->  (
a  x.  b )  e.  B )
1271263expb 1152 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  (SubRing ` fld )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a  x.  b )  e.  B
)
1287, 127sylan 457 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  x.  b
)  e.  B )
129128adantlr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  x.  b
)  e.  B )
130123, 124, 72, 129plymul 19616 . . . . . . . . . . . . 13  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( CC 
X.  { -u 1 } )  o F  x.  e )  e.  (Poly `  B )
)
131 ffvelrn 5679 . . . . . . . . . . . . . . . 16  |-  ( ( e : CC --> CC  /\  X  e.  CC )  ->  ( e `  X
)  e.  CC )
13275, 10, 131syl2anr 464 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( e `  X )  e.  CC )
133 cnfldneg 16416 . . . . . . . . . . . . . . 15  |-  ( ( e `  X )  e.  CC  ->  (
( inv g ` fld ) `  ( e `  X
) )  =  -u ( e `  X
) )
134132, 133syl 15 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  -u ( e `  X ) )
135 negex 9066 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  _V
136 fnconstg 5445 . . . . . . . . . . . . . . . . 17  |-  ( -u
1  e.  _V  ->  ( CC  X.  { -u
1 } )  Fn  CC )
137135, 136mp1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( CC  X.  { -u 1 } )  Fn  CC )
13877adantl 452 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  e  Fn  CC )
13983a1i 10 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  CC  e.  _V )
14010adantr 451 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  X  e.  CC )
141 fnfvof 6106 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( CC  X.  { -u 1 } )  Fn  CC  /\  e  Fn  CC )  /\  ( CC  e.  _V  /\  X  e.  CC ) )  -> 
( ( ( CC 
X.  { -u 1 } )  o F  x.  e ) `  X )  =  ( ( ( CC  X.  { -u 1 } ) `
 X )  x.  ( e `  X
) ) )
142137, 138, 139, 140, 141syl22anc 1183 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X )  =  ( ( ( CC 
X.  { -u 1 } ) `  X
)  x.  ( e `
 X ) ) )
143135fvconst2 5745 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  CC  ->  (
( CC  X.  { -u 1 } ) `  X )  =  -u
1 )
144140, 143syl 15 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( CC 
X.  { -u 1 } ) `  X
)  =  -u 1
)
145144oveq1d 5889 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( ( CC  X.  { -u
1 } ) `  X )  x.  (
e `  X )
)  =  ( -u
1  x.  ( e `
 X ) ) )
146132mulm1d 9247 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( -u 1  x.  ( e `  X
) )  =  -u ( e `  X
) )
147142, 145, 1463eqtrd 2332 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X )  = 
-u ( e `  X ) )
148134, 147eqtr4d 2331 . . . . . . . . . . . . 13  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X ) )
149 fveq1 5540 . . . . . . . . . . . . . . 15  |-  ( p  =  ( ( CC 
X.  { -u 1 } )  o F  x.  e )  -> 
( p `  X
)  =  ( ( ( CC  X.  { -u 1 } )  o F  x.  e ) `
 X ) )
150149eqeq2d 2307 . . . . . . . . . . . . . 14  |-  ( p  =  ( ( CC 
X.  { -u 1 } )  o F  x.  e )  -> 
( ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( p `  X )  <->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X ) ) )
151150rspcev 2897 . . . . . . . . . . . . 13  |-  ( ( ( ( CC  X.  { -u 1 } )  o F  x.  e
)  e.  (Poly `  B )  /\  (
( inv g ` fld ) `  ( e `  X
) )  =  ( ( ( CC  X.  { -u 1 } )  o F  x.  e
) `  X )
)  ->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  ( e `  X ) )  =  ( p `  X
) )
152130, 148, 151syl2anc 642 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( p `  X ) )
153 fveq2 5541 . . . . . . . . . . . . . 14  |-  ( b  =  ( e `  X )  ->  (
( inv g ` fld ) `  b )  =  ( ( inv g ` fld ) `  ( e `  X
) ) )
154153eqeq1d 2304 . . . . . . . . . . . . 13  |-  ( b  =  ( e `  X )  ->  (
( ( inv g ` fld ) `  b )  =  ( p `  X )  <->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( p `  X ) ) )
155154rexbidv 2577 . . . . . . . . . . . 12  |-  ( b  =  ( e `  X )  ->  ( E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X )  <->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  ( e `  X ) )  =  ( p `  X
) ) )
156152, 155syl5ibrcom 213 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( b  =  ( e `  X
)  ->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
157156rexlimdva 2680 . . . . . . . . . 10  |-  ( ph  ->  ( E. e  e.  (Poly `  B )
b  =  ( e `
 X )  ->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
158157imp 418 . . . . . . . . 9  |-  ( (
ph  /\  E. e  e.  (Poly `  B )
b  =  ( e `
 X ) )  ->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X ) )
15958, 158sylan2b 461 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  b )  =  ( p `  X ) )
160 fvex 5555 . . . . . . . . 9  |-  ( ( inv g ` fld ) `  b )  e.  _V
161 eqeq1 2302 . . . . . . . . . 10  |-  ( a  =  ( ( inv g ` fld ) `  b )  ->  ( a  =  ( p `  X
)  <->  ( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
162161rexbidv 2577 . . . . . . . . 9  |-  ( a  =  ( ( inv g ` fld ) `  b )  ->  ( E. p  e.  (Poly `  B )
a  =  ( p `
 X )  <->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
163160, 162elab 2927 . . . . . . . 8  |-  ( ( ( inv g ` fld ) `  b )  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  <->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X ) )
164159, 163sylibr 203 . . . . . . 7  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  ( ( inv g ` fld ) `  b )  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) } )
165114a1i 10 . . . . . . 7  |-  ( ph  ->  1  =  ( 1r
` fld
) )
166125a1i 10 . . . . . . 7  |-  ( ph  ->  x.  =  ( .r
` fld
) )
16744, 116sseldd 3194 . . . . . . 7  |-  ( ph  ->  1  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
168129adantlr 695 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  e  e.  (Poly `  B
) )  /\  d  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  x.  b
)  e.  B )
16967, 68, 73, 168plymul 19616 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( e  o F  x.  d )  e.  (Poly `  B
) )
170 fnfvof 6106 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  Fn  CC  /\  d  Fn  CC )  /\  ( CC  e.  _V  /\  X  e.  CC ) )  ->  (
( e  o F  x.  d ) `  X )  =  ( ( e `  X
)  x.  ( d `
 X ) ) )
17178, 82, 84, 85, 170syl22anc 1183 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e  o F  x.  d
) `  X )  =  ( ( e `
 X )  x.  ( d `  X
) ) )
172171eqcomd 2301 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e `
 X )  x.  ( d `  X
) )  =  ( ( e  o F  x.  d ) `  X ) )
173 fveq1 5540 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( e  o F  x.  d )  ->  ( p `  X )  =  ( ( e  o F  x.  d ) `  X ) )
174173eqeq2d 2307 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( e  o F  x.  d )  ->  ( ( ( e `  X )  x.  ( d `  X ) )  =  ( p `  X
)  <->  ( ( e `
 X )  x.  ( d `  X
) )  =  ( ( e  o F  x.  d ) `  X ) ) )
175174rspcev 2897 . . . . . . . . . . . . . . 15  |-  ( ( ( e  o F  x.  d )  e.  (Poly `  B )  /\  ( ( e `  X )  x.  (
d `  X )
)  =  ( ( e  o F  x.  d ) `  X
) )  ->  E. p  e.  (Poly `  B )
( ( e `  X )  x.  (
d `  X )
)  =  ( p `
 X ) )
176169, 172, 175syl2anc 642 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  ( d `  X ) )  =  ( p `  X
) )
177 oveq2 5882 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( d `  X )  ->  (
( e `  X
)  x.  c )  =  ( ( e `
 X )  x.  ( d `  X
) ) )
178177eqeq1d 2304 . . . . . . . . . . . . . . 15  |-  ( c  =  ( d `  X )  ->  (
( ( e `  X )  x.  c
)  =  ( p `
 X )  <->  ( (
e `  X )  x.  ( d `  X
) )  =  ( p `  X ) ) )
179178rexbidv 2577 . . . . . . . . . . . . . 14  |-  ( c  =  ( d `  X )  ->  ( E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  ( d `  X ) )  =  ( p `  X
) ) )
180176, 179syl5ibrcom 213 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( c  =  ( d `  X
)  ->  E. p  e.  (Poly `  B )
( ( e `  X )  x.  c
)  =  ( p `
 X ) ) )
181180rexlimdva 2680 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
) ) )
182 oveq1 5881 . . . . . . . . . . . . . . 15  |-  ( b  =  ( e `  X )  ->  (
b  x.  c )  =  ( ( e `
 X )  x.  c ) )
183182eqeq1d 2304 . . . . . . . . . . . . . 14  |-  ( b  =  ( e `  X )  ->  (
( b  x.  c
)  =  ( p `
 X )  <->  ( (
e `  X )  x.  c )  =  ( p `  X ) ) )
184183rexbidv 2577 . . . . . . . . . . . . 13  |-  ( b  =  ( e `  X )  ->  ( E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
) ) )
185184imbi2d 307 . . . . . . . . . . . 12  |-  ( b  =  ( e `  X )  ->  (
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) )  <->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
) ) ) )
186181, 185syl5ibrcom 213 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( b  =  ( e `  X
)  ->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) ) ) )
187186rexlimdva 2680 . . . . . . . . . 10  |-  ( ph  ->  ( E. e  e.  (Poly `  B )
b  =  ( e `
 X )  -> 
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) ) ) )
1881873imp 1145 . . . . . . . . 9  |-  ( (
ph  /\  E. e  e.  (Poly `  B )
b  =  ( e `
 X )  /\  E. d  e.  (Poly `  B ) c  =  ( d `  X
) )  ->  E. p  e.  (Poly `  B )
( b  x.  c
)  =  ( p `
 X ) )
18950, 58, 66, 188syl3anb 1225 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  E. p  e.  (Poly `  B )
( b  x.  c
)  =  ( p `
 X ) )
190 ovex 5899 . . . . . . . . 9  |-  ( b  x.  c )  e. 
_V
191 eqeq1 2302 . . . . . . . . . 10  |-  ( a  =  ( b  x.  c )  ->  (
a  =  ( p `
 X )  <->  ( b  x.  c )  =  ( p `  X ) ) )
192191rexbidv 2577 . . . . . . . . 9  |-  ( a  =  ( b  x.  c )  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) ) )
193190, 192elab 2927 . . . . . . . 8  |-  ( ( b  x.  c )  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B )
( b  x.  c
)  =  ( p `
 X ) )
194189, 193sylibr 203 . . . . . . 7  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  ( b  x.  c )  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
19515, 17, 19, 29, 49, 110, 164, 165, 166, 167, 194, 4issubrngd2 15959 . . . . . 6  |-  ( ph  ->  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) }  e.  (SubRing ` fld ) )
196 plyid 19607 . . . . . . . . . . 11  |-  ( ( B  C_  CC  /\  1  e.  B )  ->  X p  e.  (Poly `  B
) )
1979, 116, 196syl2anc 642 . . . . . . . . . 10  |-  ( ph  ->  X p  e.  (Poly `  B ) )
198 df-idp 19587 . . . . . . . . . . . 12  |-  X p  =  (  _I  |`  CC )
199198fveq1i 5542 . . . . . . . . . . 11  |-  ( X p `  X )  =  ( (  _I  |`  CC ) `  X
)
200 fvresi 5727 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
(  _I  |`  CC ) `
 X )  =  X )
20110, 200syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( (  _I  |`  CC ) `
 X )  =  X )
202199, 201syl5req 2341 . . . . . . . . . 10  |-  ( ph  ->  X  =  ( X p `  X ) )
203 fveq1 5540 . . . . . . . . . . . 12  |-  ( p  =  X p  -> 
( p `  X
)  =  ( X p `  X ) )
204203eqeq2d 2307 . . . . . . . . . . 11  |-  ( p  =  X p  -> 
( X  =  ( p `  X )  <-> 
X  =  ( X p `  X ) ) )
205204rspcev 2897 . . . . . . . . . 10  |-  ( ( X p  e.  (Poly `  B )  /\  X  =  ( X p `
 X ) )  ->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) )
206197, 202, 205syl2anc 642 . . . . . . . . 9  |-  ( ph  ->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) )
207 eqeq1 2302 . . . . . . . . . . . 12  |-  ( a  =  X  ->  (
a  =  ( p `
 X )  <->  X  =  ( p `  X
) ) )
208207rexbidv 2577 . . . . . . . . . . 11  |-  ( a  =  X  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) ) )
209208elabg 2928 . . . . . . . . . 10  |-  ( X  e.  CC  ->  ( X  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B ) X  =  ( p `  X ) ) )
21010, 209syl 15 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  <->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) ) )
211206, 210mpbird 223 . . . . . . . 8  |-  ( ph  ->  X  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
212211snssd 3776 . . . . . . 7  |-  ( ph  ->  { X }  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
21344, 212unssd 3364 . . . . . 6  |-  ( ph  ->  ( B  u.  { X } )  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
2144, 6, 12, 13, 14, 195, 213rgspnmin 27479 . . . . 5  |-  ( ph  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
215214sseld 3192 . . . 4  |-  ( ph  ->  ( V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  ->  V  e.  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) } ) )
216 fvex 5555 . . . . . . 7  |-  ( p `
 X )  e. 
_V
217 eleq1 2356 . . . . . . 7  |-  ( V  =  ( p `  X )  ->  ( V  e.  _V  <->  ( p `  X )  e.  _V ) )
218216, 217mpbiri 224 . . . . . 6  |-  ( V  =  ( p `  X )  ->  V  e.  _V )
219218rexlimivw 2676 . . . . 5  |-  ( E. p  e.  (Poly `  B ) V  =  ( p `  X
)  ->  V  e.  _V )
220 eqeq1 2302 . . . . . 6  |-  ( a  =  V  ->  (
a  =  ( p `
 X )  <->  V  =  ( p `  X
) ) )
221220rexbidv 2577 . . . . 5  |-  ( a  =  V  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X
) ) )
222219, 221elab3 2934 . . . 4  |-  ( V  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X ) )
223215, 222syl6ib 217 . . 3  |-  ( ph  ->  ( V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  ->  E. p  e.  (Poly `  B ) V  =  ( p `  X ) ) )
2244, 6, 12, 13, 14rgspncl 27477 . . . . . . 7  |-  ( ph  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  e.  (SubRing ` fld ) )
225224adantr 451 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  e.  (SubRing ` fld ) )
226 simpr 447 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  p  e.  (Poly `  B ) )
227 ssun2 3352 . . . . . . . . 9  |-  { X }  C_  ( B  u.  { X } )
2284, 6, 12, 13, 14rgspnssid 27478 . . . . . . . . 9  |-  ( ph  ->  ( B  u.  { X } )  C_  (
(RingSpan ` fld ) `  ( B  u.  { X }
) ) )
229227, 228syl5ss 3203 . . . . . . . 8  |-  ( ph  ->  { X }  C_  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
230 snidg 3678 . . . . . . . . 9  |-  ( X  e.  CC  ->  X  e.  { X } )
23110, 230syl 15 . . . . . . . 8  |-  ( ph  ->  X  e.  { X } )
232229, 231sseldd 3194 . . . . . . 7  |-  ( ph  ->  X  e.  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) )
233232adantr 451 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  X  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
234 ssun1 3351 . . . . . . . 8  |-  B  C_  ( B  u.  { X } )
235234, 228syl5ss 3203 . . . . . . 7  |-  ( ph  ->  B  C_  ( (RingSpan ` fld ) `
 ( B  u.  { X } ) ) )
236235adantr 451 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  B  C_  (
(RingSpan ` fld ) `  ( B  u.  { X }
) ) )
237225, 226, 233, 236cnsrplycl 27475 . . . . 5  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( p `  X )  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
238 eleq1 2356 . . . . 5  |-  ( V  =  ( p `  X )  ->  ( V  e.  ( (RingSpan ` fld ) `
 ( B  u.  { X } ) )  <-> 
( p `  X
)  e.  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) ) )
239237, 238syl5ibrcom 213 . . . 4  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( V  =  ( p `  X
)  ->  V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) ) )
240239rexlimdva 2680 . . 3  |-  ( ph  ->  ( E. p  e.  (Poly `  B ) V  =  ( p `  X )  ->  V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) ) )
241223, 240impbid 183 . 2  |-  ( ph  ->  ( V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X ) ) )
2422, 241bitrd 244 1  |-  ( ph  ->  ( V  e.  S  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   {cab 2282   E.wrex 2557   _Vcvv 2801    u. cun 3163    C_ wss 3165   {csn 3653    _I cid 4320    X. cxp 4703    |` cres 4707    Fn wfn 5266   -->wf 5267   ` cfv 5271  (class class class)co 5874    o Fcof 6092   CCcc 8751   0cc0 8753   1c1 8754    + caddc 8756    x. cmul 8758   -ucneg 9054   Basecbs 13164   ↾s cress 13165   +g cplusg 13224   .rcmulr 13225   0gc0g 13416   inv gcminusg 14379  SubGrpcsubg 14631   Ringcrg 15353   1rcur 15355  SubRingcsubrg 15557  RingSpancrgspn 15558  ℂfldccnfld 16393  Polycply 19582   X pcidp 19583
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528  ax-inf2 7358  ax-cnex 8809  ax-resscn 8810  ax-1cn 8811  ax-icn 8812  ax-addcl 8813  ax-addrcl 8814  ax-mulcl 8815  ax-mulrcl 8816  ax-mulcom 8817  ax-addass 8818  ax-mulass 8819  ax-distr 8820  ax-i2m1 8821  ax-1ne0 8822  ax-1rid 8823  ax-rnegex 8824  ax-rrecex 8825  ax-cnre 8826  ax-pre-lttri 8827  ax-pre-lttrn 8828  ax-pre-ltadd 8829  ax-pre-mulgt0 8830  ax-pre-sup 8831  ax-addf 8832  ax-mulf 8833
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-nel 2462  df-ral 2561  df-rex 2562  df-reu 2563  df-rmo 2564  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pss 3181  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-tp 3661  df-op 3662  df-uni 3844  df-int 3879  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-tr 4130  df-eprel 4321  df-id 4325  df-po 4330  df-so 4331  df-fr 4368  df-se 4369  df-we 4370  df-ord 4411  df-on 4412  df-lim 4413  df-suc 4414  df-om 4673  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-isom 5280  df-ov 5877  df-oprab 5878  df-mpt2 5879  df-of 6094  df-1st 6138  df-2nd 6139  df-riota 6320  df-recs 6404  df-rdg 6439  df-1o 6495  df-oadd 6499  df-er 6676  df-map 6790  df-pm 6791  df-en 6880  df-dom 6881  df-sdom 6882  df-fin 6883  df-sup 7210  df-oi 7241  df-card 7588  df-pnf 8885  df-mnf 8886  df-xr 8887  df-ltxr 8888  df-le 8889  df-sub 9055  df-neg 9056  df-div 9440  df-nn 9763  df-2 9820  df-3 9821  df-4 9822  df-5 9823  df-6 9824  df-7 9825  df-8 9826  df-9 9827  df-10 9828  df-n0 9982  df-z 10041  df-dec 10141  df-uz 10247  df-rp 10371  df-fz 10799  df-fzo 10887  df-fl 10941  df-seq 11063  df-exp 11121  df-hash 11354  df-cj 11600  df-re 11601  df-im 11602  df-sqr 11736  df-abs 11737  df-clim 11978  df-rlim 11979  df-sum 12175  df-struct 13166  df-ndx 13167  df-slot 13168  df-base 13169  df-sets 13170  df-ress 13171  df-plusg 13237  df-mulr 13238  df-starv 13239  df-tset 13243  df-ple 13244  df-ds 13246  df-0g 13420  df-mnd 14383  df-grp 14505  df-minusg 14506  df-subg 14634  df-cmn 15107  df-mgp 15342  df-rng 15356  df-cring 15357  df-ur 15358  df-subrg 15559  df-rgspn 15560  df-cnfld 16394  df-0p 19041  df-ply 19586  df-idp 19587  df-coe 19588  df-dgr 19589
  Copyright terms: Public domain W3C validator