Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngunsnply Structured version   Unicode version

Theorem rngunsnply 27369
Description: Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
Hypotheses
Ref Expression
rngunsnply.b  |-  ( ph  ->  B  e.  (SubRing ` fld ) )
rngunsnply.x  |-  ( ph  ->  X  e.  CC )
rngunsnply.s  |-  ( ph  ->  S  =  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) )
Assertion
Ref Expression
rngunsnply  |-  ( ph  ->  ( V  e.  S  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X
) ) )
Distinct variable groups:    ph, p    B, p    X, p    V, p
Allowed substitution hint:    S( p)

Proof of Theorem rngunsnply
Dummy variables  a 
b  c  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rngunsnply.s . . 3  |-  ( ph  ->  S  =  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) )
21eleq2d 2505 . 2  |-  ( ph  ->  ( V  e.  S  <->  V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) ) )
3 cnrng 16728 . . . . . . 7  |-fld  e.  Ring
43a1i 11 . . . . . 6  |-  ( ph  ->fld  e. 
Ring )
5 cnfldbas 16712 . . . . . . 7  |-  CC  =  ( Base ` fld )
65a1i 11 . . . . . 6  |-  ( ph  ->  CC  =  ( Base ` fld ) )
7 rngunsnply.b . . . . . . . 8  |-  ( ph  ->  B  e.  (SubRing ` fld ) )
85subrgss 15874 . . . . . . . 8  |-  ( B  e.  (SubRing ` fld )  ->  B  C_  CC )
97, 8syl 16 . . . . . . 7  |-  ( ph  ->  B  C_  CC )
10 rngunsnply.x . . . . . . . 8  |-  ( ph  ->  X  e.  CC )
1110snssd 3945 . . . . . . 7  |-  ( ph  ->  { X }  C_  CC )
129, 11unssd 3525 . . . . . 6  |-  ( ph  ->  ( B  u.  { X } )  C_  CC )
13 eqidd 2439 . . . . . 6  |-  ( ph  ->  (RingSpan ` fld )  =  (RingSpan ` fld ) )
14 eqidd 2439 . . . . . 6  |-  ( ph  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  =  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
15 eqidd 2439 . . . . . . 7  |-  ( ph  ->  (flds  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  =  (flds  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) } ) )
16 cnfld0 16730 . . . . . . . 8  |-  0  =  ( 0g ` fld )
1716a1i 11 . . . . . . 7  |-  ( ph  ->  0  =  ( 0g
` fld
) )
18 cnfldadd 16713 . . . . . . . 8  |-  +  =  ( +g  ` fld )
1918a1i 11 . . . . . . 7  |-  ( ph  ->  +  =  ( +g  ` fld ) )
20 plyf 20122 . . . . . . . . . . . 12  |-  ( p  e.  (Poly `  B
)  ->  p : CC
--> CC )
21 ffvelrn 5871 . . . . . . . . . . . 12  |-  ( ( p : CC --> CC  /\  X  e.  CC )  ->  ( p `  X
)  e.  CC )
2220, 10, 21syl2anr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( p `  X )  e.  CC )
23 eleq1 2498 . . . . . . . . . . 11  |-  ( a  =  ( p `  X )  ->  (
a  e.  CC  <->  ( p `  X )  e.  CC ) )
2422, 23syl5ibrcom 215 . . . . . . . . . 10  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( a  =  ( p `  X
)  ->  a  e.  CC ) )
2524rexlimdva 2832 . . . . . . . . 9  |-  ( ph  ->  ( E. p  e.  (Poly `  B )
a  =  ( p `
 X )  -> 
a  e.  CC ) )
2625ss2abdv 3418 . . . . . . . 8  |-  ( ph  ->  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) }  C_  { a  |  a  e.  CC } )
27 abid2 2555 . . . . . . . . 9  |-  { a  |  a  e.  CC }  =  CC
2827, 5eqtri 2458 . . . . . . . 8  |-  { a  |  a  e.  CC }  =  ( Base ` fld )
2926, 28syl6sseq 3396 . . . . . . 7  |-  ( ph  ->  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) }  C_  ( Base ` fld ) )
30 abid2 2555 . . . . . . . . 9  |-  { a  |  a  e.  B }  =  B
31 plyconst 20130 . . . . . . . . . . . . 13  |-  ( ( B  C_  CC  /\  a  e.  B )  ->  ( CC  X.  { a } )  e.  (Poly `  B ) )
329, 31sylan 459 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  ( CC  X.  { a } )  e.  (Poly `  B ) )
3310adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  a  e.  B )  ->  X  e.  CC )
34 vex 2961 . . . . . . . . . . . . . . 15  |-  a  e. 
_V
3534fvconst2 5950 . . . . . . . . . . . . . 14  |-  ( X  e.  CC  ->  (
( CC  X.  {
a } ) `  X )  =  a )
3633, 35syl 16 . . . . . . . . . . . . 13  |-  ( (
ph  /\  a  e.  B )  ->  (
( CC  X.  {
a } ) `  X )  =  a )
3736eqcomd 2443 . . . . . . . . . . . 12  |-  ( (
ph  /\  a  e.  B )  ->  a  =  ( ( CC 
X.  { a } ) `  X ) )
38 fveq1 5730 . . . . . . . . . . . . . 14  |-  ( p  =  ( CC  X.  { a } )  ->  ( p `  X )  =  ( ( CC  X.  {
a } ) `  X ) )
3938eqeq2d 2449 . . . . . . . . . . . . 13  |-  ( p  =  ( CC  X.  { a } )  ->  ( a  =  ( p `  X
)  <->  a  =  ( ( CC  X.  {
a } ) `  X ) ) )
4039rspcev 3054 . . . . . . . . . . . 12  |-  ( ( ( CC  X.  {
a } )  e.  (Poly `  B )  /\  a  =  (
( CC  X.  {
a } ) `  X ) )  ->  E. p  e.  (Poly `  B ) a  =  ( p `  X
) )
4132, 37, 40syl2anc 644 . . . . . . . . . . 11  |-  ( (
ph  /\  a  e.  B )  ->  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) )
4241ex 425 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  B  ->  E. p  e.  (Poly `  B ) a  =  ( p `  X
) ) )
4342ss2abdv 3418 . . . . . . . . 9  |-  ( ph  ->  { a  |  a  e.  B }  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
4430, 43syl5eqssr 3395 . . . . . . . 8  |-  ( ph  ->  B  C_  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) } )
45 subrgsubg 15879 . . . . . . . . . 10  |-  ( B  e.  (SubRing ` fld )  ->  B  e.  (SubGrp ` fld ) )
467, 45syl 16 . . . . . . . . 9  |-  ( ph  ->  B  e.  (SubGrp ` fld )
)
4716subg0cl 14957 . . . . . . . . 9  |-  ( B  e.  (SubGrp ` fld )  ->  0  e.  B )
4846, 47syl 16 . . . . . . . 8  |-  ( ph  ->  0  e.  B )
4944, 48sseldd 3351 . . . . . . 7  |-  ( ph  ->  0  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
50 biid 229 . . . . . . . . 9  |-  ( ph  <->  ph )
51 vex 2961 . . . . . . . . . 10  |-  b  e. 
_V
52 eqeq1 2444 . . . . . . . . . . . 12  |-  ( a  =  b  ->  (
a  =  ( p `
 X )  <->  b  =  ( p `  X
) ) )
5352rexbidv 2728 . . . . . . . . . . 11  |-  ( a  =  b  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) b  =  ( p `  X
) ) )
54 fveq1 5730 . . . . . . . . . . . . 13  |-  ( p  =  e  ->  (
p `  X )  =  ( e `  X ) )
5554eqeq2d 2449 . . . . . . . . . . . 12  |-  ( p  =  e  ->  (
b  =  ( p `
 X )  <->  b  =  ( e `  X
) ) )
5655cbvrexv 2935 . . . . . . . . . . 11  |-  ( E. p  e.  (Poly `  B ) b  =  ( p `  X
)  <->  E. e  e.  (Poly `  B ) b  =  ( e `  X
) )
5753, 56syl6bb 254 . . . . . . . . . 10  |-  ( a  =  b  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. e  e.  (Poly `  B ) b  =  ( e `  X
) ) )
5851, 57elab 3084 . . . . . . . . 9  |-  ( b  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. e  e.  (Poly `  B )
b  =  ( e `
 X ) )
59 vex 2961 . . . . . . . . . 10  |-  c  e. 
_V
60 eqeq1 2444 . . . . . . . . . . . 12  |-  ( a  =  c  ->  (
a  =  ( p `
 X )  <->  c  =  ( p `  X
) ) )
6160rexbidv 2728 . . . . . . . . . . 11  |-  ( a  =  c  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) c  =  ( p `  X
) ) )
62 fveq1 5730 . . . . . . . . . . . . 13  |-  ( p  =  d  ->  (
p `  X )  =  ( d `  X ) )
6362eqeq2d 2449 . . . . . . . . . . . 12  |-  ( p  =  d  ->  (
c  =  ( p `
 X )  <->  c  =  ( d `  X
) ) )
6463cbvrexv 2935 . . . . . . . . . . 11  |-  ( E. p  e.  (Poly `  B ) c  =  ( p `  X
)  <->  E. d  e.  (Poly `  B ) c  =  ( d `  X
) )
6561, 64syl6bb 254 . . . . . . . . . 10  |-  ( a  =  c  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. d  e.  (Poly `  B ) c  =  ( d `  X
) ) )
6659, 65elab 3084 . . . . . . . . 9  |-  ( c  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. d  e.  (Poly `  B )
c  =  ( d `
 X ) )
67 simplr 733 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  e  e.  (Poly `  B ) )
68 simpr 449 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  d  e.  (Poly `  B ) )
6918subrgacl 15884 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  (SubRing ` fld )  /\  a  e.  B  /\  b  e.  B )  ->  (
a  +  b )  e.  B )
70693expb 1155 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  (SubRing ` fld )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a  +  b )  e.  B )
717, 70sylan 459 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  +  b )  e.  B )
7271adantlr 697 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  +  b )  e.  B )
7372adantlr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  e  e.  (Poly `  B
) )  /\  d  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  +  b )  e.  B )
7467, 68, 73plyadd 20141 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( e  o F  +  d )  e.  (Poly `  B
) )
75 plyf 20122 . . . . . . . . . . . . . . . . . . 19  |-  ( e  e.  (Poly `  B
)  ->  e : CC
--> CC )
76 ffn 5594 . . . . . . . . . . . . . . . . . . 19  |-  ( e : CC --> CC  ->  e  Fn  CC )
7775, 76syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( e  e.  (Poly `  B
)  ->  e  Fn  CC )
7877ad2antlr 709 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  e  Fn  CC )
79 plyf 20122 . . . . . . . . . . . . . . . . . . 19  |-  ( d  e.  (Poly `  B
)  ->  d : CC
--> CC )
80 ffn 5594 . . . . . . . . . . . . . . . . . . 19  |-  ( d : CC --> CC  ->  d  Fn  CC )
8179, 80syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( d  e.  (Poly `  B
)  ->  d  Fn  CC )
8281adantl 454 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  d  Fn  CC )
83 cnex 9076 . . . . . . . . . . . . . . . . . 18  |-  CC  e.  _V
8483a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  CC  e.  _V )
8510ad2antrr 708 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  X  e.  CC )
86 fnfvof 6320 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  Fn  CC  /\  d  Fn  CC )  /\  ( CC  e.  _V  /\  X  e.  CC ) )  ->  (
( e  o F  +  d ) `  X )  =  ( ( e `  X
)  +  ( d `
 X ) ) )
8778, 82, 84, 85, 86syl22anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e  o F  +  d ) `  X )  =  ( ( e `
 X )  +  ( d `  X
) ) )
8887eqcomd 2443 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e `
 X )  +  ( d `  X
) )  =  ( ( e  o F  +  d ) `  X ) )
89 fveq1 5730 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( e  o F  +  d )  ->  ( p `  X )  =  ( ( e  o F  +  d ) `  X ) )
9089eqeq2d 2449 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( e  o F  +  d )  ->  ( ( ( e `  X )  +  ( d `  X ) )  =  ( p `  X
)  <->  ( ( e `
 X )  +  ( d `  X
) )  =  ( ( e  o F  +  d ) `  X ) ) )
9190rspcev 3054 . . . . . . . . . . . . . . 15  |-  ( ( ( e  o F  +  d )  e.  (Poly `  B )  /\  ( ( e `  X )  +  ( d `  X ) )  =  ( ( e  o F  +  d ) `  X
) )  ->  E. p  e.  (Poly `  B )
( ( e `  X )  +  ( d `  X ) )  =  ( p `
 X ) )
9274, 88, 91syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  ( d `  X ) )  =  ( p `  X
) )
93 oveq2 6092 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( d `  X )  ->  (
( e `  X
)  +  c )  =  ( ( e `
 X )  +  ( d `  X
) ) )
9493eqeq1d 2446 . . . . . . . . . . . . . . 15  |-  ( c  =  ( d `  X )  ->  (
( ( e `  X )  +  c )  =  ( p `
 X )  <->  ( (
e `  X )  +  ( d `  X ) )  =  ( p `  X
) ) )
9594rexbidv 2728 . . . . . . . . . . . . . 14  |-  ( c  =  ( d `  X )  ->  ( E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  ( d `  X ) )  =  ( p `  X
) ) )
9692, 95syl5ibrcom 215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( c  =  ( d `  X
)  ->  E. p  e.  (Poly `  B )
( ( e `  X )  +  c )  =  ( p `
 X ) ) )
9796rexlimdva 2832 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
) ) )
98 oveq1 6091 . . . . . . . . . . . . . . 15  |-  ( b  =  ( e `  X )  ->  (
b  +  c )  =  ( ( e `
 X )  +  c ) )
9998eqeq1d 2446 . . . . . . . . . . . . . 14  |-  ( b  =  ( e `  X )  ->  (
( b  +  c )  =  ( p `
 X )  <->  ( (
e `  X )  +  c )  =  ( p `  X
) ) )
10099rexbidv 2728 . . . . . . . . . . . . 13  |-  ( b  =  ( e `  X )  ->  ( E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
) ) )
101100imbi2d 309 . . . . . . . . . . . 12  |-  ( b  =  ( e `  X )  ->  (
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) )  <->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  +  c )  =  ( p `  X
) ) ) )
10297, 101syl5ibrcom 215 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( b  =  ( e `  X
)  ->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) ) ) )
103102rexlimdva 2832 . . . . . . . . . 10  |-  ( ph  ->  ( E. e  e.  (Poly `  B )
b  =  ( e `
 X )  -> 
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) ) ) )
1041033imp 1148 . . . . . . . . 9  |-  ( (
ph  /\  E. e  e.  (Poly `  B )
b  =  ( e `
 X )  /\  E. d  e.  (Poly `  B ) c  =  ( d `  X
) )  ->  E. p  e.  (Poly `  B )
( b  +  c )  =  ( p `
 X ) )
10550, 58, 66, 104syl3anb 1228 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  E. p  e.  (Poly `  B )
( b  +  c )  =  ( p `
 X ) )
106 ovex 6109 . . . . . . . . 9  |-  ( b  +  c )  e. 
_V
107 eqeq1 2444 . . . . . . . . . 10  |-  ( a  =  ( b  +  c )  ->  (
a  =  ( p `
 X )  <->  ( b  +  c )  =  ( p `  X
) ) )
108107rexbidv 2728 . . . . . . . . 9  |-  ( a  =  ( b  +  c )  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( b  +  c )  =  ( p `  X
) ) )
109106, 108elab 3084 . . . . . . . 8  |-  ( ( b  +  c )  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B )
( b  +  c )  =  ( p `
 X ) )
110105, 109sylibr 205 . . . . . . 7  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  ( b  +  c )  e. 
{ a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) } )
111 ax-1cn 9053 . . . . . . . . . . . . . . . . . 18  |-  1  e.  CC
112 cnfldneg 16732 . . . . . . . . . . . . . . . . . 18  |-  ( 1  e.  CC  ->  (
( inv g ` fld ) `  1 )  = 
-u 1 )
113111, 112mp1i 12 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( inv g ` fld ) `  1 )  =  -u 1 )
114 cnfld1 16731 . . . . . . . . . . . . . . . . . . . 20  |-  1  =  ( 1r ` fld )
115114subrg1cl 15881 . . . . . . . . . . . . . . . . . . 19  |-  ( B  e.  (SubRing ` fld )  ->  1  e.  B )
1167, 115syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  1  e.  B )
117 eqid 2438 . . . . . . . . . . . . . . . . . . 19  |-  ( inv g ` fld )  =  ( inv g ` fld )
118117subginvcl 14958 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  (SubGrp ` fld )  /\  1  e.  B
)  ->  ( ( inv g ` fld ) `  1 )  e.  B )
11946, 116, 118syl2anc 644 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( inv g ` fld ) `  1 )  e.  B )
120113, 119eqeltrrd 2513 . . . . . . . . . . . . . . . 16  |-  ( ph  -> 
-u 1  e.  B
)
121 plyconst 20130 . . . . . . . . . . . . . . . 16  |-  ( ( B  C_  CC  /\  -u 1  e.  B )  ->  ( CC  X.  { -u 1 } )  e.  (Poly `  B ) )
1229, 120, 121syl2anc 644 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( CC  X.  { -u 1 } )  e.  (Poly `  B )
)
123122adantr 453 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( CC  X.  { -u 1 } )  e.  (Poly `  B
) )
124 simpr 449 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  e  e.  (Poly `  B ) )
125 cnfldmul 16714 . . . . . . . . . . . . . . . . . 18  |-  x.  =  ( .r ` fld )
126125subrgmcl 15885 . . . . . . . . . . . . . . . . 17  |-  ( ( B  e.  (SubRing ` fld )  /\  a  e.  B  /\  b  e.  B )  ->  (
a  x.  b )  e.  B )
1271263expb 1155 . . . . . . . . . . . . . . . 16  |-  ( ( B  e.  (SubRing ` fld )  /\  (
a  e.  B  /\  b  e.  B )
)  ->  ( a  x.  b )  e.  B
)
1287, 127sylan 459 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  x.  b
)  e.  B )
129128adantlr 697 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  x.  b
)  e.  B )
130123, 124, 72, 129plymul 20142 . . . . . . . . . . . . 13  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( CC 
X.  { -u 1 } )  o F  x.  e )  e.  (Poly `  B )
)
131 ffvelrn 5871 . . . . . . . . . . . . . . . 16  |-  ( ( e : CC --> CC  /\  X  e.  CC )  ->  ( e `  X
)  e.  CC )
13275, 10, 131syl2anr 466 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( e `  X )  e.  CC )
133 cnfldneg 16732 . . . . . . . . . . . . . . 15  |-  ( ( e `  X )  e.  CC  ->  (
( inv g ` fld ) `  ( e `  X
) )  =  -u ( e `  X
) )
134132, 133syl 16 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  -u ( e `  X ) )
135 negex 9309 . . . . . . . . . . . . . . . . 17  |-  -u 1  e.  _V
136 fnconstg 5634 . . . . . . . . . . . . . . . . 17  |-  ( -u
1  e.  _V  ->  ( CC  X.  { -u
1 } )  Fn  CC )
137135, 136mp1i 12 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( CC  X.  { -u 1 } )  Fn  CC )
13877adantl 454 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  e  Fn  CC )
13983a1i 11 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  CC  e.  _V )
14010adantr 453 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  X  e.  CC )
141 fnfvof 6320 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( CC  X.  { -u 1 } )  Fn  CC  /\  e  Fn  CC )  /\  ( CC  e.  _V  /\  X  e.  CC ) )  -> 
( ( ( CC 
X.  { -u 1 } )  o F  x.  e ) `  X )  =  ( ( ( CC  X.  { -u 1 } ) `
 X )  x.  ( e `  X
) ) )
142137, 138, 139, 140, 141syl22anc 1186 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X )  =  ( ( ( CC 
X.  { -u 1 } ) `  X
)  x.  ( e `
 X ) ) )
143135fvconst2 5950 . . . . . . . . . . . . . . . . 17  |-  ( X  e.  CC  ->  (
( CC  X.  { -u 1 } ) `  X )  =  -u
1 )
144140, 143syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( CC 
X.  { -u 1 } ) `  X
)  =  -u 1
)
145144oveq1d 6099 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( ( CC  X.  { -u
1 } ) `  X )  x.  (
e `  X )
)  =  ( -u
1  x.  ( e `
 X ) ) )
146132mulm1d 9490 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( -u 1  x.  ( e `  X
) )  =  -u ( e `  X
) )
147142, 145, 1463eqtrd 2474 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X )  = 
-u ( e `  X ) )
148134, 147eqtr4d 2473 . . . . . . . . . . . . 13  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X ) )
149 fveq1 5730 . . . . . . . . . . . . . . 15  |-  ( p  =  ( ( CC 
X.  { -u 1 } )  o F  x.  e )  -> 
( p `  X
)  =  ( ( ( CC  X.  { -u 1 } )  o F  x.  e ) `
 X ) )
150149eqeq2d 2449 . . . . . . . . . . . . . 14  |-  ( p  =  ( ( CC 
X.  { -u 1 } )  o F  x.  e )  -> 
( ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( p `  X )  <->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( ( ( CC  X.  { -u
1 } )  o F  x.  e ) `
 X ) ) )
151150rspcev 3054 . . . . . . . . . . . . 13  |-  ( ( ( ( CC  X.  { -u 1 } )  o F  x.  e
)  e.  (Poly `  B )  /\  (
( inv g ` fld ) `  ( e `  X
) )  =  ( ( ( CC  X.  { -u 1 } )  o F  x.  e
) `  X )
)  ->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  ( e `  X ) )  =  ( p `  X
) )
152130, 148, 151syl2anc 644 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( p `  X ) )
153 fveq2 5731 . . . . . . . . . . . . . 14  |-  ( b  =  ( e `  X )  ->  (
( inv g ` fld ) `  b )  =  ( ( inv g ` fld ) `  ( e `  X
) ) )
154153eqeq1d 2446 . . . . . . . . . . . . 13  |-  ( b  =  ( e `  X )  ->  (
( ( inv g ` fld ) `  b )  =  ( p `  X )  <->  ( ( inv g ` fld ) `  ( e `
 X ) )  =  ( p `  X ) ) )
155154rexbidv 2728 . . . . . . . . . . . 12  |-  ( b  =  ( e `  X )  ->  ( E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X )  <->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  ( e `  X ) )  =  ( p `  X
) ) )
156152, 155syl5ibrcom 215 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( b  =  ( e `  X
)  ->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
157156rexlimdva 2832 . . . . . . . . . 10  |-  ( ph  ->  ( E. e  e.  (Poly `  B )
b  =  ( e `
 X )  ->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
158157imp 420 . . . . . . . . 9  |-  ( (
ph  /\  E. e  e.  (Poly `  B )
b  =  ( e `
 X ) )  ->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X ) )
15958, 158sylan2b 463 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  b )  =  ( p `  X ) )
160 fvex 5745 . . . . . . . . 9  |-  ( ( inv g ` fld ) `  b )  e.  _V
161 eqeq1 2444 . . . . . . . . . 10  |-  ( a  =  ( ( inv g ` fld ) `  b )  ->  ( a  =  ( p `  X
)  <->  ( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
162161rexbidv 2728 . . . . . . . . 9  |-  ( a  =  ( ( inv g ` fld ) `  b )  ->  ( E. p  e.  (Poly `  B )
a  =  ( p `
 X )  <->  E. p  e.  (Poly `  B )
( ( inv g ` fld ) `  b )  =  ( p `  X ) ) )
163160, 162elab 3084 . . . . . . . 8  |-  ( ( ( inv g ` fld ) `  b )  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  <->  E. p  e.  (Poly `  B ) ( ( inv g ` fld ) `  b )  =  ( p `  X ) )
164159, 163sylibr 205 . . . . . . 7  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  ( ( inv g ` fld ) `  b )  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) } )
165114a1i 11 . . . . . . 7  |-  ( ph  ->  1  =  ( 1r
` fld
) )
166125a1i 11 . . . . . . 7  |-  ( ph  ->  x.  =  ( .r
` fld
) )
16744, 116sseldd 3351 . . . . . . 7  |-  ( ph  ->  1  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
168129adantlr 697 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  e  e.  (Poly `  B
) )  /\  d  e.  (Poly `  B )
)  /\  ( a  e.  B  /\  b  e.  B ) )  -> 
( a  x.  b
)  e.  B )
16967, 68, 73, 168plymul 20142 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( e  o F  x.  d )  e.  (Poly `  B
) )
170 fnfvof 6320 . . . . . . . . . . . . . . . . 17  |-  ( ( ( e  Fn  CC  /\  d  Fn  CC )  /\  ( CC  e.  _V  /\  X  e.  CC ) )  ->  (
( e  o F  x.  d ) `  X )  =  ( ( e `  X
)  x.  ( d `
 X ) ) )
17178, 82, 84, 85, 170syl22anc 1186 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e  o F  x.  d
) `  X )  =  ( ( e `
 X )  x.  ( d `  X
) ) )
172171eqcomd 2443 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( ( e `
 X )  x.  ( d `  X
) )  =  ( ( e  o F  x.  d ) `  X ) )
173 fveq1 5730 . . . . . . . . . . . . . . . . 17  |-  ( p  =  ( e  o F  x.  d )  ->  ( p `  X )  =  ( ( e  o F  x.  d ) `  X ) )
174173eqeq2d 2449 . . . . . . . . . . . . . . . 16  |-  ( p  =  ( e  o F  x.  d )  ->  ( ( ( e `  X )  x.  ( d `  X ) )  =  ( p `  X
)  <->  ( ( e `
 X )  x.  ( d `  X
) )  =  ( ( e  o F  x.  d ) `  X ) ) )
175174rspcev 3054 . . . . . . . . . . . . . . 15  |-  ( ( ( e  o F  x.  d )  e.  (Poly `  B )  /\  ( ( e `  X )  x.  (
d `  X )
)  =  ( ( e  o F  x.  d ) `  X
) )  ->  E. p  e.  (Poly `  B )
( ( e `  X )  x.  (
d `  X )
)  =  ( p `
 X ) )
176169, 172, 175syl2anc 644 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  ( d `  X ) )  =  ( p `  X
) )
177 oveq2 6092 . . . . . . . . . . . . . . . 16  |-  ( c  =  ( d `  X )  ->  (
( e `  X
)  x.  c )  =  ( ( e `
 X )  x.  ( d `  X
) ) )
178177eqeq1d 2446 . . . . . . . . . . . . . . 15  |-  ( c  =  ( d `  X )  ->  (
( ( e `  X )  x.  c
)  =  ( p `
 X )  <->  ( (
e `  X )  x.  ( d `  X
) )  =  ( p `  X ) ) )
179178rexbidv 2728 . . . . . . . . . . . . . 14  |-  ( c  =  ( d `  X )  ->  ( E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  ( d `  X ) )  =  ( p `  X
) ) )
180176, 179syl5ibrcom 215 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  e  e.  (Poly `  B )
)  /\  d  e.  (Poly `  B ) )  ->  ( c  =  ( d `  X
)  ->  E. p  e.  (Poly `  B )
( ( e `  X )  x.  c
)  =  ( p `
 X ) ) )
181180rexlimdva 2832 . . . . . . . . . . . 12  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
) ) )
182 oveq1 6091 . . . . . . . . . . . . . . 15  |-  ( b  =  ( e `  X )  ->  (
b  x.  c )  =  ( ( e `
 X )  x.  c ) )
183182eqeq1d 2446 . . . . . . . . . . . . . 14  |-  ( b  =  ( e `  X )  ->  (
( b  x.  c
)  =  ( p `
 X )  <->  ( (
e `  X )  x.  c )  =  ( p `  X ) ) )
184183rexbidv 2728 . . . . . . . . . . . . 13  |-  ( b  =  ( e `  X )  ->  ( E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
) ) )
185184imbi2d 309 . . . . . . . . . . . 12  |-  ( b  =  ( e `  X )  ->  (
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) )  <->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( ( e `  X )  x.  c )  =  ( p `  X
) ) ) )
186181, 185syl5ibrcom 215 . . . . . . . . . . 11  |-  ( (
ph  /\  e  e.  (Poly `  B ) )  ->  ( b  =  ( e `  X
)  ->  ( E. d  e.  (Poly `  B
) c  =  ( d `  X )  ->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) ) ) )
187186rexlimdva 2832 . . . . . . . . . 10  |-  ( ph  ->  ( E. e  e.  (Poly `  B )
b  =  ( e `
 X )  -> 
( E. d  e.  (Poly `  B )
c  =  ( d `
 X )  ->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) ) ) )
1881873imp 1148 . . . . . . . . 9  |-  ( (
ph  /\  E. e  e.  (Poly `  B )
b  =  ( e `
 X )  /\  E. d  e.  (Poly `  B ) c  =  ( d `  X
) )  ->  E. p  e.  (Poly `  B )
( b  x.  c
)  =  ( p `
 X ) )
18950, 58, 66, 188syl3anb 1228 . . . . . . . 8  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  E. p  e.  (Poly `  B )
( b  x.  c
)  =  ( p `
 X ) )
190 ovex 6109 . . . . . . . . 9  |-  ( b  x.  c )  e. 
_V
191 eqeq1 2444 . . . . . . . . . 10  |-  ( a  =  ( b  x.  c )  ->  (
a  =  ( p `
 X )  <->  ( b  x.  c )  =  ( p `  X ) ) )
192191rexbidv 2728 . . . . . . . . 9  |-  ( a  =  ( b  x.  c )  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) ( b  x.  c )  =  ( p `  X
) ) )
193190, 192elab 3084 . . . . . . . 8  |-  ( ( b  x.  c )  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B )
( b  x.  c
)  =  ( p `
 X ) )
194189, 193sylibr 205 . . . . . . 7  |-  ( (
ph  /\  b  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  /\  c  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )  ->  ( b  x.  c )  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
19515, 17, 19, 29, 49, 110, 164, 165, 166, 167, 194, 4issubrngd2 16267 . . . . . 6  |-  ( ph  ->  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) }  e.  (SubRing ` fld ) )
196 plyid 20133 . . . . . . . . . . 11  |-  ( ( B  C_  CC  /\  1  e.  B )  ->  X p  e.  (Poly `  B
) )
1979, 116, 196syl2anc 644 . . . . . . . . . 10  |-  ( ph  ->  X p  e.  (Poly `  B ) )
198 df-idp 20113 . . . . . . . . . . . 12  |-  X p  =  (  _I  |`  CC )
199198fveq1i 5732 . . . . . . . . . . 11  |-  ( X p `  X )  =  ( (  _I  |`  CC ) `  X
)
200 fvresi 5927 . . . . . . . . . . . 12  |-  ( X  e.  CC  ->  (
(  _I  |`  CC ) `
 X )  =  X )
20110, 200syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( (  _I  |`  CC ) `
 X )  =  X )
202199, 201syl5req 2483 . . . . . . . . . 10  |-  ( ph  ->  X  =  ( X p `  X ) )
203 fveq1 5730 . . . . . . . . . . . 12  |-  ( p  =  X p  -> 
( p `  X
)  =  ( X p `  X ) )
204203eqeq2d 2449 . . . . . . . . . . 11  |-  ( p  =  X p  -> 
( X  =  ( p `  X )  <-> 
X  =  ( X p `  X ) ) )
205204rspcev 3054 . . . . . . . . . 10  |-  ( ( X p  e.  (Poly `  B )  /\  X  =  ( X p `
 X ) )  ->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) )
206197, 202, 205syl2anc 644 . . . . . . . . 9  |-  ( ph  ->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) )
207 eqeq1 2444 . . . . . . . . . . . 12  |-  ( a  =  X  ->  (
a  =  ( p `
 X )  <->  X  =  ( p `  X
) ) )
208207rexbidv 2728 . . . . . . . . . . 11  |-  ( a  =  X  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) ) )
209208elabg 3085 . . . . . . . . . 10  |-  ( X  e.  CC  ->  ( X  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B ) X  =  ( p `  X ) ) )
21010, 209syl 16 . . . . . . . . 9  |-  ( ph  ->  ( X  e.  {
a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) }  <->  E. p  e.  (Poly `  B ) X  =  ( p `  X
) ) )
211206, 210mpbird 225 . . . . . . . 8  |-  ( ph  ->  X  e.  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
212211snssd 3945 . . . . . . 7  |-  ( ph  ->  { X }  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
21344, 212unssd 3525 . . . . . 6  |-  ( ph  ->  ( B  u.  { X } )  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
2144, 6, 12, 13, 14, 195, 213rgspnmin 27367 . . . . 5  |-  ( ph  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  C_  { a  |  E. p  e.  (Poly `  B )
a  =  ( p `
 X ) } )
215214sseld 3349 . . . 4  |-  ( ph  ->  ( V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  ->  V  e.  { a  |  E. p  e.  (Poly `  B
) a  =  ( p `  X ) } ) )
216 fvex 5745 . . . . . . 7  |-  ( p `
 X )  e. 
_V
217 eleq1 2498 . . . . . . 7  |-  ( V  =  ( p `  X )  ->  ( V  e.  _V  <->  ( p `  X )  e.  _V ) )
218216, 217mpbiri 226 . . . . . 6  |-  ( V  =  ( p `  X )  ->  V  e.  _V )
219218rexlimivw 2828 . . . . 5  |-  ( E. p  e.  (Poly `  B ) V  =  ( p `  X
)  ->  V  e.  _V )
220 eqeq1 2444 . . . . . 6  |-  ( a  =  V  ->  (
a  =  ( p `
 X )  <->  V  =  ( p `  X
) ) )
221220rexbidv 2728 . . . . 5  |-  ( a  =  V  ->  ( E. p  e.  (Poly `  B ) a  =  ( p `  X
)  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X
) ) )
222219, 221elab3 3091 . . . 4  |-  ( V  e.  { a  |  E. p  e.  (Poly `  B ) a  =  ( p `  X
) }  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X ) )
223215, 222syl6ib 219 . . 3  |-  ( ph  ->  ( V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  ->  E. p  e.  (Poly `  B ) V  =  ( p `  X ) ) )
2244, 6, 12, 13, 14rgspncl 27365 . . . . . . 7  |-  ( ph  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  e.  (SubRing ` fld ) )
225224adantr 453 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  e.  (SubRing ` fld ) )
226 simpr 449 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  p  e.  (Poly `  B ) )
2274, 6, 12, 13, 14rgspnssid 27366 . . . . . . . . 9  |-  ( ph  ->  ( B  u.  { X } )  C_  (
(RingSpan ` fld ) `  ( B  u.  { X }
) ) )
228227unssbd 3527 . . . . . . . 8  |-  ( ph  ->  { X }  C_  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
229 snidg 3841 . . . . . . . . 9  |-  ( X  e.  CC  ->  X  e.  { X } )
23010, 229syl 16 . . . . . . . 8  |-  ( ph  ->  X  e.  { X } )
231228, 230sseldd 3351 . . . . . . 7  |-  ( ph  ->  X  e.  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) )
232231adantr 453 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  X  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
233227unssad 3526 . . . . . . 7  |-  ( ph  ->  B  C_  ( (RingSpan ` fld ) `
 ( B  u.  { X } ) ) )
234233adantr 453 . . . . . 6  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  B  C_  (
(RingSpan ` fld ) `  ( B  u.  { X }
) ) )
235225, 226, 232, 234cnsrplycl 27363 . . . . 5  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( p `  X )  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) )
236 eleq1 2498 . . . . 5  |-  ( V  =  ( p `  X )  ->  ( V  e.  ( (RingSpan ` fld ) `
 ( B  u.  { X } ) )  <-> 
( p `  X
)  e.  ( (RingSpan ` fld ) `  ( B  u.  { X } ) ) ) )
237235, 236syl5ibrcom 215 . . . 4  |-  ( (
ph  /\  p  e.  (Poly `  B ) )  ->  ( V  =  ( p `  X
)  ->  V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) ) )
238237rexlimdva 2832 . . 3  |-  ( ph  ->  ( E. p  e.  (Poly `  B ) V  =  ( p `  X )  ->  V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) ) ) )
239223, 238impbid 185 . 2  |-  ( ph  ->  ( V  e.  ( (RingSpan ` fld ) `  ( B  u.  { X }
) )  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X ) ) )
2402, 239bitrd 246 1  |-  ( ph  ->  ( V  e.  S  <->  E. p  e.  (Poly `  B ) V  =  ( p `  X
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 178    /\ wa 360    /\ w3a 937    = wceq 1653    e. wcel 1726   {cab 2424   E.wrex 2708   _Vcvv 2958    u. cun 3320    C_ wss 3322   {csn 3816    _I cid 4496    X. cxp 4879    |` cres 4883    Fn wfn 5452   -->wf 5453   ` cfv 5457  (class class class)co 6084    o Fcof 6306   CCcc 8993   0cc0 8995   1c1 8996    + caddc 8998    x. cmul 9000   -ucneg 9297   Basecbs 13474   ↾s cress 13475   +g cplusg 13534   .rcmulr 13535   0gc0g 13728   inv gcminusg 14691  SubGrpcsubg 14943   Ringcrg 15665   1rcur 15667  SubRingcsubrg 15869  RingSpancrgspn 15870  ℂfldccnfld 16708  Polycply 20108   X pcidp 20109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-13 1728  ax-14 1730  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419  ax-rep 4323  ax-sep 4333  ax-nul 4341  ax-pow 4380  ax-pr 4406  ax-un 4704  ax-inf2 7599  ax-cnex 9051  ax-resscn 9052  ax-1cn 9053  ax-icn 9054  ax-addcl 9055  ax-addrcl 9056  ax-mulcl 9057  ax-mulrcl 9058  ax-mulcom 9059  ax-addass 9060  ax-mulass 9061  ax-distr 9062  ax-i2m1 9063  ax-1ne0 9064  ax-1rid 9065  ax-rnegex 9066  ax-rrecex 9067  ax-cnre 9068  ax-pre-lttri 9069  ax-pre-lttrn 9070  ax-pre-ltadd 9071  ax-pre-mulgt0 9072  ax-pre-sup 9073  ax-addf 9074  ax-mulf 9075
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 938  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-eu 2287  df-mo 2288  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ne 2603  df-nel 2604  df-ral 2712  df-rex 2713  df-reu 2714  df-rmo 2715  df-rab 2716  df-v 2960  df-sbc 3164  df-csb 3254  df-dif 3325  df-un 3327  df-in 3329  df-ss 3336  df-pss 3338  df-nul 3631  df-if 3742  df-pw 3803  df-sn 3822  df-pr 3823  df-tp 3824  df-op 3825  df-uni 4018  df-int 4053  df-iun 4097  df-br 4216  df-opab 4270  df-mpt 4271  df-tr 4306  df-eprel 4497  df-id 4501  df-po 4506  df-so 4507  df-fr 4544  df-se 4545  df-we 4546  df-ord 4587  df-on 4588  df-lim 4589  df-suc 4590  df-om 4849  df-xp 4887  df-rel 4888  df-cnv 4889  df-co 4890  df-dm 4891  df-rn 4892  df-res 4893  df-ima 4894  df-iota 5421  df-fun 5459  df-fn 5460  df-f 5461  df-f1 5462  df-fo 5463  df-f1o 5464  df-fv 5465  df-isom 5466  df-ov 6087  df-oprab 6088  df-mpt2 6089  df-of 6308  df-1st 6352  df-2nd 6353  df-riota 6552  df-recs 6636  df-rdg 6671  df-1o 6727  df-oadd 6731  df-er 6908  df-map 7023  df-pm 7024  df-en 7113  df-dom 7114  df-sdom 7115  df-fin 7116  df-sup 7449  df-oi 7482  df-card 7831  df-pnf 9127  df-mnf 9128  df-xr 9129  df-ltxr 9130  df-le 9131  df-sub 9298  df-neg 9299  df-div 9683  df-nn 10006  df-2 10063  df-3 10064  df-4 10065  df-5 10066  df-6 10067  df-7 10068  df-8 10069  df-9 10070  df-10 10071  df-n0 10227  df-z 10288  df-dec 10388  df-uz 10494  df-rp 10618  df-fz 11049  df-fzo 11141  df-fl 11207  df-seq 11329  df-exp 11388  df-hash 11624  df-cj 11909  df-re 11910  df-im 11911  df-sqr 12045  df-abs 12046  df-clim 12287  df-rlim 12288  df-sum 12485  df-struct 13476  df-ndx 13477  df-slot 13478  df-base 13479  df-sets 13480  df-ress 13481  df-plusg 13547  df-mulr 13548  df-starv 13549  df-tset 13553  df-ple 13554  df-ds 13556  df-unif 13557  df-0g 13732  df-mnd 14695  df-grp 14817  df-minusg 14818  df-subg 14946  df-cmn 15419  df-mgp 15654  df-rng 15668  df-cring 15669  df-ur 15670  df-subrg 15871  df-rgspn 15872  df-cnfld 16709  df-0p 19565  df-ply 20112  df-idp 20113  df-coe 20114  df-dgr 20115
  Copyright terms: Public domain W3C validator