MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmpt2 Unicode version

Theorem rnmpt2 6041
Description: The range of an operation given by the "maps to" notation. (Contributed by FL, 20-Jun-2011.)
Hypothesis
Ref Expression
rngop.1  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
Assertion
Ref Expression
rnmpt2  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
Distinct variable groups:    y, z, A    z, B    z, C    z, F    x, y, z
Allowed substitution hints:    A( x)    B( x, y)    C( x, y)    F( x, y)

Proof of Theorem rnmpt2
StepHypRef Expression
1 rngop.1 . . . 4  |-  F  =  ( x  e.  A ,  y  e.  B  |->  C )
2 df-mpt2 5950 . . . 4  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
31, 2eqtri 2378 . . 3  |-  F  =  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }
43rneqi 4987 . 2  |-  ran  F  =  ran  { <. <. x ,  y >. ,  z
>.  |  ( (
x  e.  A  /\  y  e.  B )  /\  z  =  C
) }
5 rnoprab2 6018 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  z  =  C ) }  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
64, 5eqtri 2378 1  |-  ran  F  =  { z  |  E. x  e.  A  E. y  e.  B  z  =  C }
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1642    e. wcel 1710   {cab 2344   E.wrex 2620   ran crn 4772   {coprab 5946    e. cmpt2 5947
This theorem is referenced by:  elrnmpt2g  6043  elrnmpt2  6044  ralrnmpt2  6045  dffi3  7274  ixpiunwdom  7395  qnnen  12589  txuni2  17366  txbas  17368  xkobval  17387  xkoopn  17390  txrest  17431  ptrescn  17439  tx1stc  17450  xkoptsub  17454  xkopt  17455  xkococn  17460  ptcmplem4  17851  met2ndci  18170  i1fadd  19154  i1fmul  19155  rnmpt2ss  23290  cnre2csqima  23465  qqhval2  23639  eldiophb  26159
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4222  ax-nul 4230  ax-pr 4295
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-rex 2625  df-rab 2628  df-v 2866  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-nul 3532  df-if 3642  df-sn 3722  df-pr 3723  df-op 3725  df-br 4105  df-opab 4159  df-cnv 4779  df-dm 4781  df-rn 4782  df-oprab 5949  df-mpt2 5950
  Copyright terms: Public domain W3C validator