MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab Unicode version

Theorem rnoprab 5972
Description: The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
Assertion
Ref Expression
rnoprab  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem rnoprab
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dfoprab2 5937 . . 3  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
21rneqi 4942 . 2  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  ran  {
<. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }
3 rnopab 4961 . 2  |-  ran  { <. w ,  z >.  |  E. x E. y
( w  =  <. x ,  y >.  /\  ph ) }  =  {
z  |  E. w E. x E. y ( w  =  <. x ,  y >.  /\  ph ) }
4 exrot3 1849 . . . 4  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y E. w ( w  =  <. x ,  y >.  /\  ph ) )
5 opex 4274 . . . . . . 7  |-  <. x ,  y >.  e.  _V
65isseti 2828 . . . . . 6  |-  E. w  w  =  <. x ,  y >.
7 19.41v 1873 . . . . . 6  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ( E. w  w  =  <. x ,  y >.  /\  ph ) )
86, 7mpbiran 884 . . . . 5  |-  ( E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  ph )
982exbii 1574 . . . 4  |-  ( E. x E. y E. w ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
104, 9bitri 240 . . 3  |-  ( E. w E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  E. x E. y ph )
1110abbii 2428 . 2  |-  { z  |  E. w E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }  =  { z  |  E. x E. y ph }
122, 3, 113eqtri 2340 1  |-  ran  { <. <. x ,  y
>. ,  z >.  | 
ph }  =  {
z  |  E. x E. y ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1532    = wceq 1633   {cab 2302   <.cop 3677   {copab 4113   ran crn 4727   {coprab 5901
This theorem is referenced by:  rnoprab2  5973  ellines  25161
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-14 1705  ax-6 1720  ax-7 1725  ax-11 1732  ax-12 1897  ax-ext 2297  ax-sep 4178  ax-nul 4186  ax-pr 4251
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1533  df-nf 1536  df-sb 1640  df-eu 2180  df-mo 2181  df-clab 2303  df-cleq 2309  df-clel 2312  df-nfc 2441  df-ne 2481  df-rab 2586  df-v 2824  df-dif 3189  df-un 3191  df-in 3193  df-ss 3200  df-nul 3490  df-if 3600  df-sn 3680  df-pr 3681  df-op 3683  df-br 4061  df-opab 4115  df-cnv 4734  df-dm 4736  df-rn 4737  df-oprab 5904
  Copyright terms: Public domain W3C validator