Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnoprab2 Structured version   Unicode version

Theorem rnoprab2 6149
 Description: The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
Assertion
Ref Expression
rnoprab2
Distinct variable groups:   ,   ,,
Allowed substitution hints:   (,,)   (,)   (,,)

Proof of Theorem rnoprab2
StepHypRef Expression
1 rnoprab 6148 . 2
2 r2ex 2735 . . 3
32abbii 2547 . 2
41, 3eqtr4i 2458 1
 Colors of variables: wff set class Syntax hints:   wa 359  wex 1550   wceq 1652   wcel 1725  cab 2421  wrex 2698   crn 4871  coprab 6074 This theorem is referenced by:  rnmpt2  6172 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pr 4395 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-opab 4259  df-cnv 4878  df-dm 4880  df-rn 4881  df-oprab 6077
 Copyright terms: Public domain W3C validator