MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresi Unicode version

Theorem rnresi 5028
Description: The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
Assertion
Ref Expression
rnresi  |-  ran  (  _I  |`  A )  =  A

Proof of Theorem rnresi
StepHypRef Expression
1 df-ima 4702 . 2  |-  (  _I  " A )  =  ran  (  _I  |`  A )
2 imai 5027 . 2  |-  (  _I  " A )  =  A
31, 2eqtr3i 2305 1  |-  ran  (  _I  |`  A )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1623    _I cid 4304   ran crn 4690    |` cres 4691   "cima 4692
This theorem is referenced by:  resiima  5029  iordsmo  6374  dfac9  7762  restid2  13335  sylow1lem2  14910  sylow3lem1  14938  wilthlem3  20308  relexprn  24033  dispos  25287  diophrw  26838  lsslinds  27301  lnrfg  27323  dvsid  27548
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pr 4214
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702
  Copyright terms: Public domain W3C validator