MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Structured version   Unicode version

Theorem rnresv 5330
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv  |-  ran  ( A  |`  _V )  =  ran  A

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 5324 . . 3  |-  `' `' A  =  ( A  |` 
_V )
21rneqi 5096 . 2  |-  ran  `' `' A  =  ran  ( A  |`  _V )
3 rncnvcnv 5093 . 2  |-  ran  `' `' A  =  ran  A
42, 3eqtr3i 2458 1  |-  ran  ( A  |`  _V )  =  ran  A
Colors of variables: wff set class
Syntax hints:    = wceq 1652   _Vcvv 2956   `'ccnv 4877   ran crn 4879    |` cres 4880
This theorem is referenced by:  dfrn4  5331
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-sep 4330  ax-nul 4338  ax-pr 4403
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2285  df-mo 2286  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ne 2601  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-xp 4884  df-rel 4885  df-cnv 4886  df-dm 4888  df-rn 4889  df-res 4890
  Copyright terms: Public domain W3C validator