MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnresv Unicode version

Theorem rnresv 5149
Description: The range of a universal restriction. (Contributed by NM, 14-May-2008.)
Assertion
Ref Expression
rnresv  |-  ran  ( A  |`  _V )  =  ran  A

Proof of Theorem rnresv
StepHypRef Expression
1 cnvcnv2 5143 . . 3  |-  `' `' A  =  ( A  |` 
_V )
21rneqi 4921 . 2  |-  ran  `' `' A  =  ran  ( A  |`  _V )
3 rncnvcnv 4918 . 2  |-  ran  `' `' A  =  ran  A
42, 3eqtr3i 2318 1  |-  ran  ( A  |`  _V )  =  ran  A
Colors of variables: wff set class
Syntax hints:    = wceq 1632   _Vcvv 2801   `'ccnv 4704   ran crn 4706    |` cres 4707
This theorem is referenced by:  dfrn4  5150
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-sep 4157  ax-nul 4165  ax-pr 4230
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-xp 4711  df-rel 4712  df-cnv 4713  df-dm 4715  df-rn 4716  df-res 4717
  Copyright terms: Public domain W3C validator