MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdvds Unicode version

Theorem rpdvds 13083
Description: If  K is relatively prime to  N then it is also relatively prime to any divisor  M of  N. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 960 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  K  e.  ZZ )
2 simpl2 961 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  e.  ZZ )
3 gcddvds 12974 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  M ) )
41, 2, 3syl2anc 643 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M )  ||  M ) )
54simpld 446 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  K
)
64simprd 450 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  M
)
7 simprr 734 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  ||  N
)
8 ax-1ne0 9019 . . . . . . . . . . 11  |-  1  =/=  0
9 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =  1 )
109neeq1d 2584 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =/=  0  <->  1  =/=  0
) )
118, 10mpbiri 225 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =/=  0
)
1211neneqd 2587 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  gcd  N )  =  0 )
13 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  K  =  0 )
14 simprr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  =  0 )
15 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  ||  N
)
1614, 15eqbrtrrd 4198 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  0  ||  N
)
17 simpll3 998 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  e.  ZZ )
18 0dvds 12829 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1917, 18syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( 0  ||  N 
<->  N  =  0 ) )
2016, 19mpbid 202 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  =  0 )
2113, 20jca 519 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( K  =  0  /\  N  =  0 ) )
2221ex 424 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  =  0  /\  N  =  0 ) ) )
23 simpl3 962 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  N  e.  ZZ )
24 gcdeq0 12980 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
251, 23, 24syl2anc 643 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
2622, 25sylibrd 226 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  gcd  N )  =  0 ) )
2712, 26mtod 170 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  M  =  0 ) )
28 gcdn0cl 12973 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( K  =  0  /\  M  =  0 ) )  ->  ( K  gcd  M )  e.  NN )
291, 2, 27, 28syl21anc 1183 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  NN )
3029nnzd 10334 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  ZZ )
31 dvdstr 12842 . . . . . 6  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  M )  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
3230, 2, 23, 31syl3anc 1184 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
336, 7, 32mp2and 661 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  N
)
3412, 25mtbid 292 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  N  =  0 ) )
35 dvdslegcd 12975 . . . . 5  |-  ( ( ( ( K  gcd  M )  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( K  =  0  /\  N  =  0
) )  ->  (
( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
3630, 1, 23, 34, 35syl31anc 1187 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
375, 33, 36mp2and 661 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  ( K  gcd  N ) )
3837, 9breqtrd 4200 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  1
)
39 nnle1eq1 9988 . . 3  |-  ( ( K  gcd  M )  e.  NN  ->  (
( K  gcd  M
)  <_  1  <->  ( K  gcd  M )  =  1 ) )
4029, 39syl 16 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  <_ 
1  <->  ( K  gcd  M )  =  1 ) )
4138, 40mpbid 202 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2571   class class class wbr 4176  (class class class)co 6044   0cc0 8950   1c1 8951    <_ cle 9081   NNcn 9960   ZZcz 10242    || cdivides 12811    gcd cgcd 12965
This theorem is referenced by:  pgpfac1lem2  15592  dvdsmulf1o  20936  lgsquad2lem2  21100
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-seq 11283  df-exp 11342  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-dvds 12812  df-gcd 12966
  Copyright terms: Public domain W3C validator