MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpdvds Unicode version

Theorem rpdvds 12894
Description: If  K is relatively prime to  N then it is also relatively prime to any divisor  M of  N. (Contributed by Mario Carneiro, 19-Jun-2015.)
Assertion
Ref Expression
rpdvds  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )

Proof of Theorem rpdvds
StepHypRef Expression
1 simpl1 958 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  K  e.  ZZ )
2 simpl2 959 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  e.  ZZ )
3 gcddvds 12785 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  M ) )
41, 2, 3syl2anc 642 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  ||  K  /\  ( K  gcd  M )  ||  M ) )
54simpld 445 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  K
)
64simprd 449 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  M
)
7 simprr 733 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  M  ||  N
)
8 ax-1ne0 8893 . . . . . . . . . . 11  |-  1  =/=  0
9 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =  1 )
109neeq1d 2534 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =/=  0  <->  1  =/=  0
) )
118, 10mpbiri 224 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  N )  =/=  0
)
1211neneqd 2537 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  gcd  N )  =  0 )
13 simprl 732 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  K  =  0 )
14 simprr 733 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  =  0 )
15 simplrr 737 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  M  ||  N
)
1614, 15eqbrtrrd 4124 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  0  ||  N
)
17 simpll3 996 . . . . . . . . . . . . . 14  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  e.  ZZ )
18 0dvds 12640 . . . . . . . . . . . . . 14  |-  ( N  e.  ZZ  ->  (
0  ||  N  <->  N  = 
0 ) )
1917, 18syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( 0  ||  N 
<->  N  =  0 ) )
2016, 19mpbid 201 . . . . . . . . . . . 12  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  N  =  0 )
2113, 20jca 518 . . . . . . . . . . 11  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  (
( K  gcd  N
)  =  1  /\  M  ||  N ) )  /\  ( K  =  0  /\  M  =  0 ) )  ->  ( K  =  0  /\  N  =  0 ) )
2221ex 423 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  =  0  /\  N  =  0 ) ) )
23 simpl3 960 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  N  e.  ZZ )
24 gcdeq0 12791 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
251, 23, 24syl2anc 642 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  N )  =  0  <->  ( K  =  0  /\  N  =  0 ) ) )
2622, 25sylibrd 225 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  =  0  /\  M  =  0 )  ->  ( K  gcd  N )  =  0 ) )
2712, 26mtod 168 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  M  =  0 ) )
28 gcdn0cl 12784 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ )  /\  -.  ( K  =  0  /\  M  =  0 ) )  ->  ( K  gcd  M )  e.  NN )
291, 2, 27, 28syl21anc 1181 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  NN )
3029nnzd 10205 . . . . . 6  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  e.  ZZ )
31 dvdstr 12653 . . . . . 6  |-  ( ( ( K  gcd  M
)  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( K  gcd  M )  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
3230, 2, 23, 31syl3anc 1182 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  M  /\  M  ||  N )  -> 
( K  gcd  M
)  ||  N )
)
336, 7, 32mp2and 660 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  ||  N
)
3412, 25mtbid 291 . . . . 5  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  -.  ( K  =  0  /\  N  =  0 ) )
35 dvdslegcd 12786 . . . . 5  |-  ( ( ( ( K  gcd  M )  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( K  =  0  /\  N  =  0
) )  ->  (
( ( K  gcd  M )  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
3630, 1, 23, 34, 35syl31anc 1185 . . . 4  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( (
( K  gcd  M
)  ||  K  /\  ( K  gcd  M ) 
||  N )  -> 
( K  gcd  M
)  <_  ( K  gcd  N ) ) )
375, 33, 36mp2and 660 . . 3  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  ( K  gcd  N ) )
3837, 9breqtrd 4126 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  <_  1
)
39 nnle1eq1 9861 . . 3  |-  ( ( K  gcd  M )  e.  NN  ->  (
( K  gcd  M
)  <_  1  <->  ( K  gcd  M )  =  1 ) )
4029, 39syl 15 . 2  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( ( K  gcd  M )  <_ 
1  <->  ( K  gcd  M )  =  1 ) )
4138, 40mpbid 201 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( ( K  gcd  N )  =  1  /\  M  ||  N ) )  ->  ( K  gcd  M )  =  1 )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1642    e. wcel 1710    =/= wne 2521   class class class wbr 4102  (class class class)co 5942   0cc0 8824   1c1 8825    <_ cle 8955   NNcn 9833   ZZcz 10113    || cdivides 12622    gcd cgcd 12776
This theorem is referenced by:  pgpfac1lem2  15403  dvdsmulf1o  20540  lgsquad2lem2  20704
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1546  ax-5 1557  ax-17 1616  ax-9 1654  ax-8 1675  ax-13 1712  ax-14 1714  ax-6 1729  ax-7 1734  ax-11 1746  ax-12 1930  ax-ext 2339  ax-sep 4220  ax-nul 4228  ax-pow 4267  ax-pr 4293  ax-un 4591  ax-cnex 8880  ax-resscn 8881  ax-1cn 8882  ax-icn 8883  ax-addcl 8884  ax-addrcl 8885  ax-mulcl 8886  ax-mulrcl 8887  ax-mulcom 8888  ax-addass 8889  ax-mulass 8890  ax-distr 8891  ax-i2m1 8892  ax-1ne0 8893  ax-1rid 8894  ax-rnegex 8895  ax-rrecex 8896  ax-cnre 8897  ax-pre-lttri 8898  ax-pre-lttrn 8899  ax-pre-ltadd 8900  ax-pre-mulgt0 8901  ax-pre-sup 8902
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1319  df-ex 1542  df-nf 1545  df-sb 1649  df-eu 2213  df-mo 2214  df-clab 2345  df-cleq 2351  df-clel 2354  df-nfc 2483  df-ne 2523  df-nel 2524  df-ral 2624  df-rex 2625  df-reu 2626  df-rmo 2627  df-rab 2628  df-v 2866  df-sbc 3068  df-csb 3158  df-dif 3231  df-un 3233  df-in 3235  df-ss 3242  df-pss 3244  df-nul 3532  df-if 3642  df-pw 3703  df-sn 3722  df-pr 3723  df-tp 3724  df-op 3725  df-uni 3907  df-iun 3986  df-br 4103  df-opab 4157  df-mpt 4158  df-tr 4193  df-eprel 4384  df-id 4388  df-po 4393  df-so 4394  df-fr 4431  df-we 4433  df-ord 4474  df-on 4475  df-lim 4476  df-suc 4477  df-om 4736  df-xp 4774  df-rel 4775  df-cnv 4776  df-co 4777  df-dm 4778  df-rn 4779  df-res 4780  df-ima 4781  df-iota 5298  df-fun 5336  df-fn 5337  df-f 5338  df-f1 5339  df-fo 5340  df-f1o 5341  df-fv 5342  df-ov 5945  df-oprab 5946  df-mpt2 5947  df-2nd 6207  df-riota 6388  df-recs 6472  df-rdg 6507  df-er 6744  df-en 6949  df-dom 6950  df-sdom 6951  df-sup 7281  df-pnf 8956  df-mnf 8957  df-xr 8958  df-ltxr 8959  df-le 8960  df-sub 9126  df-neg 9127  df-div 9511  df-nn 9834  df-2 9891  df-3 9892  df-n0 10055  df-z 10114  df-uz 10320  df-rp 10444  df-seq 11136  df-exp 11195  df-cj 11674  df-re 11675  df-im 11676  df-sqr 11810  df-abs 11811  df-dvds 12623  df-gcd 12777
  Copyright terms: Public domain W3C validator