MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexp1i Unicode version

Theorem rpexp1i 12800
Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp1i  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )

Proof of Theorem rpexp1i
StepHypRef Expression
1 elnn0 9967 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 rpexp 12799 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( A ^ M )  gcd  B
)  =  1  <->  ( A  gcd  B )  =  1 ) )
32biimprd 214 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
433expa 1151 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
5 simpr 447 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
65oveq2d 5874 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ M )  =  ( A ^ 0 ) )
7 zcn 10029 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  CC )
87ad2antrr 706 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  A  e.  CC )
98exp0d 11239 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ 0 )  =  1 )
106, 9eqtrd 2315 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ M )  =  1 )
1110oveq1d 5873 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A ^ M )  gcd 
B )  =  ( 1  gcd  B ) )
12 1gcd 12716 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
1  gcd  B )  =  1 )
1312ad2antlr 707 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( 1  gcd  B )  =  1 )
1411, 13eqtrd 2315 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A ^ M )  gcd 
B )  =  1 )
1514a1d 22 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
164, 15jaodan 760 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( M  e.  NN  \/  M  =  0 ) )  -> 
( ( A  gcd  B )  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
171, 16sylan2b 461 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  e.  NN0 )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
18173impa 1146 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 357    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684  (class class class)co 5858   CCcc 8735   0cc0 8737   1c1 8738   NNcn 9746   NN0cn0 9965   ZZcz 10024   ^cexp 11104    gcd cgcd 12685
This theorem is referenced by:  rpexp12i  12801  gexexlem  15144  ablfac1lem  15303  ablfac1eu  15308  pgpfac1lem2  15310  perfectlem1  20468  perfectlem2  20469  rpvmasumlem  20636  dchrisum0flblem2  20658
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-er 6660  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-fz 10783  df-fl 10925  df-mod 10974  df-seq 11047  df-exp 11105  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-dvds 12532  df-gcd 12686  df-prm 12759
  Copyright terms: Public domain W3C validator