MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpexp1i Unicode version

Theorem rpexp1i 13080
Description: Relative primality passes to asymmetric powers. (Contributed by Stefan O'Rear, 27-Sep-2014.)
Assertion
Ref Expression
rpexp1i  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )

Proof of Theorem rpexp1i
StepHypRef Expression
1 elnn0 10183 . . 3  |-  ( M  e.  NN0  <->  ( M  e.  NN  \/  M  =  0 ) )
2 rpexp 13079 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( ( A ^ M )  gcd  B
)  =  1  <->  ( A  gcd  B )  =  1 ) )
32biimprd 215 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
433expa 1153 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  e.  NN )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
5 simpr 448 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  M  = 
0 )
65oveq2d 6060 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ M )  =  ( A ^ 0 ) )
7 zcn 10247 . . . . . . . . . 10  |-  ( A  e.  ZZ  ->  A  e.  CC )
87ad2antrr 707 . . . . . . . . 9  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  A  e.  CC )
98exp0d 11476 . . . . . . . 8  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ 0 )  =  1 )
106, 9eqtrd 2440 . . . . . . 7  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( A ^ M )  =  1 )
1110oveq1d 6059 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A ^ M )  gcd 
B )  =  ( 1  gcd  B ) )
12 1gcd 12996 . . . . . . 7  |-  ( B  e.  ZZ  ->  (
1  gcd  B )  =  1 )
1312ad2antlr 708 . . . . . 6  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( 1  gcd  B )  =  1 )
1411, 13eqtrd 2440 . . . . 5  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A ^ M )  gcd 
B )  =  1 )
1514a1d 23 . . . 4  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  =  0 )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
164, 15jaodan 761 . . 3  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  ( M  e.  NN  \/  M  =  0 ) )  -> 
( ( A  gcd  B )  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
171, 16sylan2b 462 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ )  /\  M  e.  NN0 )  ->  ( ( A  gcd  B )  =  1  ->  ( ( A ^ M )  gcd 
B )  =  1 ) )
18173impa 1148 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  M  e.  NN0 )  ->  (
( A  gcd  B
)  =  1  -> 
( ( A ^ M )  gcd  B
)  =  1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721  (class class class)co 6044   CCcc 8948   0cc0 8950   1c1 8951   NNcn 9960   NN0cn0 10181   ZZcz 10242   ^cexp 11341    gcd cgcd 12965
This theorem is referenced by:  rpexp12i  13081  gexexlem  15426  ablfac1lem  15585  ablfac1eu  15590  pgpfac1lem2  15592  perfectlem1  20970  perfectlem2  20971  rpvmasumlem  21138  dchrisum0flblem2  21160
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2389  ax-sep 4294  ax-nul 4302  ax-pow 4341  ax-pr 4367  ax-un 4664  ax-cnex 9006  ax-resscn 9007  ax-1cn 9008  ax-icn 9009  ax-addcl 9010  ax-addrcl 9011  ax-mulcl 9012  ax-mulrcl 9013  ax-mulcom 9014  ax-addass 9015  ax-mulass 9016  ax-distr 9017  ax-i2m1 9018  ax-1ne0 9019  ax-1rid 9020  ax-rnegex 9021  ax-rrecex 9022  ax-cnre 9023  ax-pre-lttri 9024  ax-pre-lttrn 9025  ax-pre-ltadd 9026  ax-pre-mulgt0 9027  ax-pre-sup 9028
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2262  df-mo 2263  df-clab 2395  df-cleq 2401  df-clel 2404  df-nfc 2533  df-ne 2573  df-nel 2574  df-ral 2675  df-rex 2676  df-reu 2677  df-rmo 2678  df-rab 2679  df-v 2922  df-sbc 3126  df-csb 3216  df-dif 3287  df-un 3289  df-in 3291  df-ss 3298  df-pss 3300  df-nul 3593  df-if 3704  df-pw 3765  df-sn 3784  df-pr 3785  df-tp 3786  df-op 3787  df-uni 3980  df-int 4015  df-iun 4059  df-br 4177  df-opab 4231  df-mpt 4232  df-tr 4267  df-eprel 4458  df-id 4462  df-po 4467  df-so 4468  df-fr 4505  df-we 4507  df-ord 4548  df-on 4549  df-lim 4550  df-suc 4551  df-om 4809  df-xp 4847  df-rel 4848  df-cnv 4849  df-co 4850  df-dm 4851  df-rn 4852  df-res 4853  df-ima 4854  df-iota 5381  df-fun 5419  df-fn 5420  df-f 5421  df-f1 5422  df-fo 5423  df-f1o 5424  df-fv 5425  df-ov 6047  df-oprab 6048  df-mpt2 6049  df-1st 6312  df-2nd 6313  df-riota 6512  df-recs 6596  df-rdg 6631  df-1o 6687  df-2o 6688  df-oadd 6691  df-er 6868  df-en 7073  df-dom 7074  df-sdom 7075  df-fin 7076  df-sup 7408  df-pnf 9082  df-mnf 9083  df-xr 9084  df-ltxr 9085  df-le 9086  df-sub 9253  df-neg 9254  df-div 9638  df-nn 9961  df-2 10018  df-3 10019  df-n0 10182  df-z 10243  df-uz 10449  df-rp 10573  df-fz 11004  df-fl 11161  df-mod 11210  df-seq 11283  df-exp 11342  df-cj 11863  df-re 11864  df-im 11865  df-sqr 11999  df-abs 12000  df-dvds 12812  df-gcd 12966  df-prm 13039
  Copyright terms: Public domain W3C validator