MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpgecld Structured version   Unicode version

Theorem rpgecld 10673
Description: A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
Hypotheses
Ref Expression
rpgecld.1  |-  ( ph  ->  A  e.  RR )
rpgecld.2  |-  ( ph  ->  B  e.  RR+ )
rpgecld.3  |-  ( ph  ->  B  <_  A )
Assertion
Ref Expression
rpgecld  |-  ( ph  ->  A  e.  RR+ )

Proof of Theorem rpgecld
StepHypRef Expression
1 rpgecld.2 . 2  |-  ( ph  ->  B  e.  RR+ )
2 rpgecld.1 . 2  |-  ( ph  ->  A  e.  RR )
3 rpgecld.3 . 2  |-  ( ph  ->  B  <_  A )
4 rpgecl 10627 . 2  |-  ( ( B  e.  RR+  /\  A  e.  RR  /\  B  <_  A )  ->  A  e.  RR+ )
51, 2, 3, 4syl3anc 1184 1  |-  ( ph  ->  A  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1725   class class class wbr 4204   RRcr 8979    <_ cle 9111   RR+crp 10602
This theorem is referenced by:  rlimno1  12437  isumrpcl  12613  divlogrlim  20516  logno1  20517  chprpcl  20981  vmadivsumb  21167  vmalogdivsum2  21222  vmalogdivsum  21223  2vmadivsumlem  21224  selbergb  21233  selberg2b  21236  selberg3lem2  21242  selberg3  21243  selberg4lem1  21244  selberg4  21245  selberg3r  21253  selberg4r  21254  selberg34r  21255  pntrlog2bndlem1  21261  pntrlog2bndlem2  21262  pntrlog2bndlem3  21263  pntrlog2bndlem4  21264  pntrlog2bndlem5  21265  pntrlog2bndlem6a  21266  pntrlog2bndlem6  21267  pntrlog2bnd  21268  pntibndlem2  21275  pntlemb  21281
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-i2m1 9048  ax-1ne0 9049  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-id 4490  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-ov 6076  df-er 6897  df-en 7102  df-dom 7103  df-sdom 7104  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-rp 10603
  Copyright terms: Public domain W3C validator