MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rplogsumlem1 Structured version   Unicode version

Theorem rplogsumlem1 21170
Description: Lemma for rplogsum 21213. (Contributed by Mario Carneiro, 2-May-2016.)
Assertion
Ref Expression
rplogsumlem1  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  2 )
Distinct variable group:    A, n

Proof of Theorem rplogsumlem1
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzfid 11304 . . 3  |-  ( A  e.  NN  ->  (
2 ... A )  e. 
Fin )
2 elfzuz 11047 . . . . . . . 8  |-  ( n  e.  ( 2 ... A )  ->  n  e.  ( ZZ>= `  2 )
)
3 eluz2b2 10540 . . . . . . . . 9  |-  ( n  e.  ( ZZ>= `  2
)  <->  ( n  e.  NN  /\  1  < 
n ) )
43simplbi 447 . . . . . . . 8  |-  ( n  e.  ( ZZ>= `  2
)  ->  n  e.  NN )
52, 4syl 16 . . . . . . 7  |-  ( n  e.  ( 2 ... A )  ->  n  e.  NN )
65adantl 453 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  NN )
76nnrpd 10639 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  RR+ )
87relogcld 20510 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  n
)  e.  RR )
92adantl 453 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  (
ZZ>= `  2 ) )
10 uz2m1nn 10542 . . . . . 6  |-  ( n  e.  ( ZZ>= `  2
)  ->  ( n  -  1 )  e.  NN )
119, 10syl 16 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  NN )
126, 11nnmulcld 10039 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  x.  ( n  -  1 ) )  e.  NN )
138, 12nndivred 10040 . . 3  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  e.  RR )
141, 13fsumrecl 12520 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  e.  RR )
15 2re 10061 . . . . 5  |-  2  e.  RR
1611nnrpd 10639 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  RR+ )
1716rpsqrcld 12206 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  e.  RR+ )
18 rerpdivcl 10631 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  ( n  -  1 ) )  e.  RR+ )  ->  (
2  /  ( sqr `  ( n  -  1 ) ) )  e.  RR )
1915, 17, 18sylancr 645 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  / 
( sqr `  (
n  -  1 ) ) )  e.  RR )
207rpsqrcld 12206 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  n
)  e.  RR+ )
21 rerpdivcl 10631 . . . . 5  |-  ( ( 2  e.  RR  /\  ( sqr `  n )  e.  RR+ )  ->  (
2  /  ( sqr `  n ) )  e.  RR )
2215, 20, 21sylancr 645 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  / 
( sqr `  n
) )  e.  RR )
2319, 22resubcld 9457 . . 3  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  e.  RR )
241, 23fsumrecl 12520 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  e.  RR )
2515a1i 11 . 2  |-  ( A  e.  NN  ->  2  e.  RR )
2617rpred 10640 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  e.  RR )
276nnred 10007 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  RR )
28 peano2rem 9359 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  -  1 )  e.  RR )
2927, 28syl 16 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  RR )
3027, 29remulcld 9108 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  x.  ( n  -  1 ) )  e.  RR )
3130, 23remulcld 9108 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  x.  ( n  - 
1 ) )  x.  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )  e.  RR )
326nncnd 10008 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  n  e.  CC )
33 ax-1cn 9040 . . . . . . . 8  |-  1  e.  CC
34 npcan 9306 . . . . . . . 8  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  - 
1 )  +  1 )  =  n )
3532, 33, 34sylancl 644 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  -  1 )  +  1 )  =  n )
3635fveq2d 5724 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  =  ( log `  n ) )
3716rpge0d 10644 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <_  (
n  -  1 ) )
38 loglesqr 20634 . . . . . . 7  |-  ( ( ( n  -  1 )  e.  RR  /\  0  <_  ( n  - 
1 ) )  -> 
( log `  (
( n  -  1 )  +  1 ) )  <_  ( sqr `  ( n  -  1 ) ) )
3929, 37, 38syl2anc 643 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  (
( n  -  1 )  +  1 ) )  <_  ( sqr `  ( n  -  1 ) ) )
4036, 39eqbrtrrd 4226 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  n
)  <_  ( sqr `  ( n  -  1 ) ) )
4120rpred 10640 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  n
)  e.  RR )
4241, 26readdcld 9107 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  +  ( sqr `  ( n  -  1 ) ) )  e.  RR )
43 remulcl 9067 . . . . . . . . . . 11  |-  ( ( ( sqr `  n
)  e.  RR  /\  2  e.  RR )  ->  ( ( sqr `  n
)  x.  2 )  e.  RR )
4441, 15, 43sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  2 )  e.  RR )
4541, 26resubcld 9457 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) )  e.  RR )
4627lem1d 9936 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  <_  n
)
477rpge0d 10644 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <_  n
)
4829, 37, 27, 47sqrled 12221 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  -  1 )  <_  n 
<->  ( sqr `  (
n  -  1 ) )  <_  ( sqr `  n ) ) )
4946, 48mpbid 202 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  <_  ( sqr `  n ) )
5041, 26subge0d 9608 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 0  <_ 
( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) )  <->  ( sqr `  ( n  -  1 ) )  <_  ( sqr `  n ) ) )
5149, 50mpbird 224 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <_  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )
5226, 41, 41, 49leadd2dd 9633 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  +  ( sqr `  ( n  -  1 ) ) )  <_  ( ( sqr `  n )  +  ( sqr `  n
) ) )
5320rpcnd 10642 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  n
)  e.  CC )
5453times2d 10203 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  2 )  =  ( ( sqr `  n )  +  ( sqr `  n
) ) )
5552, 54breqtrrd 4230 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  +  ( sqr `  ( n  -  1 ) ) )  <_  ( ( sqr `  n )  x.  2 ) )
5642, 44, 45, 51, 55lemul1ad 9942 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  +  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  <_  ( ( ( sqr `  n )  x.  2 )  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )
5732sqsqrd 12233 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n ) ^ 2 )  =  n )
58 subcl 9297 . . . . . . . . . . . . 13  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( n  -  1 )  e.  CC )
5932, 33, 58sylancl 644 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  - 
1 )  e.  CC )
6059sqsqrd 12233 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  ( n  -  1 ) ) ^ 2 )  =  ( n  -  1 ) )
6157, 60oveq12d 6091 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n ) ^ 2 )  -  ( ( sqr `  (
n  -  1 ) ) ^ 2 ) )  =  ( n  -  ( n  - 
1 ) ) )
6217rpcnd 10642 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  e.  CC )
63 subsq 11480 . . . . . . . . . . 11  |-  ( ( ( sqr `  n
)  e.  CC  /\  ( sqr `  ( n  -  1 ) )  e.  CC )  -> 
( ( ( sqr `  n ) ^ 2 )  -  ( ( sqr `  ( n  -  1 ) ) ^ 2 ) )  =  ( ( ( sqr `  n )  +  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )
6453, 62, 63syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n ) ^ 2 )  -  ( ( sqr `  (
n  -  1 ) ) ^ 2 ) )  =  ( ( ( sqr `  n
)  +  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )
65 nncan 9322 . . . . . . . . . . 11  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( n  -  (
n  -  1 ) )  =  1 )
6632, 33, 65sylancl 644 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  -  ( n  -  1
) )  =  1 )
6761, 64, 663eqtr3d 2475 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  +  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  =  1 )
68 2cn 10062 . . . . . . . . . . 11  |-  2  e.  CC
6968a1i 11 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  2  e.  CC )
7045recnd 9106 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) )  e.  CC )
7153, 69, 70mulassd 9103 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  2 )  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  =  ( ( sqr `  n )  x.  (
2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) ) ) )
7256, 67, 713brtr3d 4233 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  1  <_  (
( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) ) )
73 1re 9082 . . . . . . . . . 10  |-  1  e.  RR
7473a1i 11 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  1  e.  RR )
75 remulcl 9067 . . . . . . . . . . 11  |-  ( ( 2  e.  RR  /\  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) )  e.  RR )  ->  (
2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) )  e.  RR )
7615, 45, 75sylancr 645 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  e.  RR )
7741, 76remulcld 9108 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  (
2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) ) )  e.  RR )
7874, 77, 17lemul1d 10679 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 1  <_ 
( ( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) )  <->  ( 1  x.  ( sqr `  (
n  -  1 ) ) )  <_  (
( ( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) )  x.  ( sqr `  ( n  - 
1 ) ) ) ) )
7972, 78mpbid 202 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 1  x.  ( sqr `  (
n  -  1 ) ) )  <_  (
( ( sqr `  n
)  x.  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) ) )  x.  ( sqr `  ( n  - 
1 ) ) ) )
8062mulid2d 9098 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 1  x.  ( sqr `  (
n  -  1 ) ) )  =  ( sqr `  ( n  -  1 ) ) )
8176recnd 9106 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  e.  CC )
8253, 81, 62mul32d 9268 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) )  x.  ( sqr `  ( n  -  1 ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  x.  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
8379, 80, 823brtr3d 4233 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  <_  ( (
( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( 2  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
84 remsqsqr 12054 . . . . . . . . . . 11  |-  ( ( n  e.  RR  /\  0  <_  n )  -> 
( ( sqr `  n
)  x.  ( sqr `  n ) )  =  n )
8527, 47, 84syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  n ) )  =  n )
86 remsqsqr 12054 . . . . . . . . . . 11  |-  ( ( ( n  -  1 )  e.  RR  /\  0  <_  ( n  - 
1 ) )  -> 
( ( sqr `  (
n  -  1 ) )  x.  ( sqr `  ( n  -  1 ) ) )  =  ( n  -  1 ) )
8729, 37, 86syl2anc 643 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  ( n  - 
1 ) ) )  =  ( n  - 
1 ) )
8885, 87oveq12d 6091 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  n
) )  x.  (
( sqr `  (
n  -  1 ) )  x.  ( sqr `  ( n  -  1 ) ) ) )  =  ( n  x.  ( n  -  1 ) ) )
8953, 53, 62, 62mul4d 9270 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  n
) )  x.  (
( sqr `  (
n  -  1 ) )  x.  ( sqr `  ( n  -  1 ) ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) ) )
9088, 89eqtr3d 2469 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( n  x.  ( n  -  1 ) )  =  ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) ) )
9117rpcnne0d 10649 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  ( n  -  1 ) )  e.  CC  /\  ( sqr `  (
n  -  1 ) )  =/=  0 ) )
9220rpcnne0d 10649 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  e.  CC  /\  ( sqr `  n
)  =/=  0 ) )
93 divsubdiv 9722 . . . . . . . . . 10  |-  ( ( ( 2  e.  CC  /\  2  e.  CC )  /\  ( ( ( sqr `  ( n  -  1 ) )  e.  CC  /\  ( sqr `  ( n  - 
1 ) )  =/=  0 )  /\  (
( sqr `  n
)  e.  CC  /\  ( sqr `  n )  =/=  0 ) ) )  ->  ( (
2  /  ( sqr `  ( n  -  1 ) ) )  -  ( 2  /  ( sqr `  n ) ) )  =  ( ( ( 2  x.  ( sqr `  n ) )  -  ( 2  x.  ( sqr `  (
n  -  1 ) ) ) )  / 
( ( sqr `  (
n  -  1 ) )  x.  ( sqr `  n ) ) ) )
9469, 69, 91, 92, 93syl22anc 1185 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  =  ( ( ( 2  x.  ( sqr `  n ) )  -  ( 2  x.  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  n
) ) ) )
9569, 53, 62subdid 9481 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  =  ( ( 2  x.  ( sqr `  n
) )  -  (
2  x.  ( sqr `  ( n  -  1 ) ) ) ) )
9653, 62mulcomd 9101 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  =  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  n ) ) )
9795, 96oveq12d 6091 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) )  =  ( ( ( 2  x.  ( sqr `  n
) )  -  (
2  x.  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  ( n  -  1 ) )  x.  ( sqr `  n ) ) ) )
9894, 97eqtr4d 2470 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  =  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) ) )
9990, 98oveq12d 6091 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  x.  ( n  - 
1 ) )  x.  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )  =  ( ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) )  x.  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) ) ) )
10053, 62mulcld 9100 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  e.  CC )
10120, 17rpmulcld 10656 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  e.  RR+ )
10276, 101rerpdivcld 10667 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) )  e.  RR )
103102recnd 9106 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) )  e.  CC )
104100, 100, 103mulassd 9103 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) ) )  x.  ( ( 2  x.  ( ( sqr `  n )  -  ( sqr `  ( n  - 
1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) ) ) ) ) )
105101rpne0d 10645 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  =/=  0 )
10681, 100, 105divcan2d 9784 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( 2  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) ) ) )  =  ( 2  x.  ( ( sqr `  n )  -  ( sqr `  (
n  -  1 ) ) ) ) )
107106oveq2d 6089 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( sqr `  n )  x.  ( sqr `  (
n  -  1 ) ) )  x.  (
( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) )  /  ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) ) ) ) )  =  ( ( ( sqr `  n )  x.  ( sqr `  ( n  - 
1 ) ) )  x.  ( 2  x.  ( ( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
10899, 104, 1073eqtrd 2471 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  x.  ( n  - 
1 ) )  x.  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )  =  ( ( ( sqr `  n
)  x.  ( sqr `  ( n  -  1 ) ) )  x.  ( 2  x.  (
( sqr `  n
)  -  ( sqr `  ( n  -  1 ) ) ) ) ) )
10983, 108breqtrrd 4230 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
n  -  1 ) )  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) )
1108, 26, 31, 40, 109letrd 9219 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( log `  n
)  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) )
11112nngt0d 10035 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  0  <  (
n  x.  ( n  -  1 ) ) )
112 ledivmul 9875 . . . . 5  |-  ( ( ( log `  n
)  e.  RR  /\  ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  e.  RR  /\  (
( n  x.  (
n  -  1 ) )  e.  RR  /\  0  <  ( n  x.  ( n  -  1 ) ) ) )  ->  ( ( ( log `  n )  /  ( n  x.  ( n  -  1 ) ) )  <_ 
( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  <-> 
( log `  n
)  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) ) )
1138, 23, 30, 111, 112syl112anc 1188 . . . 4  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( ( log `  n )  /  ( n  x.  ( n  -  1 ) ) )  <_ 
( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  <-> 
( log `  n
)  <_  ( (
n  x.  ( n  -  1 ) )  x.  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) ) ) )
114110, 113mpbird 224 . . 3  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  ( (
2  /  ( sqr `  ( n  -  1 ) ) )  -  ( 2  /  ( sqr `  n ) ) ) )
1151, 13, 23, 114fsumle 12570 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )
116 oveq1 6080 . . . . . . 7  |-  ( k  =  n  ->  (
k  -  1 )  =  ( n  - 
1 ) )
117116fveq2d 5724 . . . . . 6  |-  ( k  =  n  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  (
n  -  1 ) ) )
118117oveq2d 6089 . . . . 5  |-  ( k  =  n  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  ( sqr `  ( n  - 
1 ) ) ) )
119 oveq1 6080 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  (
k  -  1 )  =  ( ( n  +  1 )  - 
1 ) )
120119fveq2d 5724 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  (
( n  +  1 )  -  1 ) ) )
121120oveq2d 6089 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  ( sqr `  ( ( n  +  1 )  - 
1 ) ) ) )
122 oveq1 6080 . . . . . . . . . 10  |-  ( k  =  2  ->  (
k  -  1 )  =  ( 2  -  1 ) )
123 2m1e1 10087 . . . . . . . . . 10  |-  ( 2  -  1 )  =  1
124122, 123syl6eq 2483 . . . . . . . . 9  |-  ( k  =  2  ->  (
k  -  1 )  =  1 )
125124fveq2d 5724 . . . . . . . 8  |-  ( k  =  2  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  1
) )
126 sqr1 12069 . . . . . . . 8  |-  ( sqr `  1 )  =  1
127125, 126syl6eq 2483 . . . . . . 7  |-  ( k  =  2  ->  ( sqr `  ( k  - 
1 ) )  =  1 )
128127oveq2d 6089 . . . . . 6  |-  ( k  =  2  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  1
) )
12968div1i 9734 . . . . . 6  |-  ( 2  /  1 )  =  2
130128, 129syl6eq 2483 . . . . 5  |-  ( k  =  2  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  2 )
131 oveq1 6080 . . . . . . 7  |-  ( k  =  ( A  + 
1 )  ->  (
k  -  1 )  =  ( ( A  +  1 )  - 
1 ) )
132131fveq2d 5724 . . . . . 6  |-  ( k  =  ( A  + 
1 )  ->  ( sqr `  ( k  - 
1 ) )  =  ( sqr `  (
( A  +  1 )  -  1 ) ) )
133132oveq2d 6089 . . . . 5  |-  ( k  =  ( A  + 
1 )  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  =  ( 2  /  ( sqr `  ( ( A  +  1 )  - 
1 ) ) ) )
134 nnz 10295 . . . . 5  |-  ( A  e.  NN  ->  A  e.  ZZ )
135 eluzp1p1 10503 . . . . . . 7  |-  ( A  e.  ( ZZ>= `  1
)  ->  ( A  +  1 )  e.  ( ZZ>= `  ( 1  +  1 ) ) )
136 nnuz 10513 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
137135, 136eleq2s 2527 . . . . . 6  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  ( ZZ>= `  (
1  +  1 ) ) )
138 df-2 10050 . . . . . . 7  |-  2  =  ( 1  +  1 )
139138fveq2i 5723 . . . . . 6  |-  ( ZZ>= ` 
2 )  =  (
ZZ>= `  ( 1  +  1 ) )
140137, 139syl6eleqr 2526 . . . . 5  |-  ( A  e.  NN  ->  ( A  +  1 )  e.  ( ZZ>= `  2
) )
141 elfzuz 11047 . . . . . . . . . . 11  |-  ( k  e.  ( 2 ... ( A  +  1 ) )  ->  k  e.  ( ZZ>= `  2 )
)
142 uz2m1nn 10542 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  2
)  ->  ( k  -  1 )  e.  NN )
143141, 142syl 16 . . . . . . . . . 10  |-  ( k  e.  ( 2 ... ( A  +  1 ) )  ->  (
k  -  1 )  e.  NN )
144143adantl 453 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( k  - 
1 )  e.  NN )
145144nnrpd 10639 . . . . . . . 8  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( k  - 
1 )  e.  RR+ )
146145rpsqrcld 12206 . . . . . . 7  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( sqr `  (
k  -  1 ) )  e.  RR+ )
147 rerpdivcl 10631 . . . . . . 7  |-  ( ( 2  e.  RR  /\  ( sqr `  ( k  -  1 ) )  e.  RR+ )  ->  (
2  /  ( sqr `  ( k  -  1 ) ) )  e.  RR )
14815, 146, 147sylancr 645 . . . . . 6  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( 2  / 
( sqr `  (
k  -  1 ) ) )  e.  RR )
149148recnd 9106 . . . . 5  |-  ( ( A  e.  NN  /\  k  e.  ( 2 ... ( A  + 
1 ) ) )  ->  ( 2  / 
( sqr `  (
k  -  1 ) ) )  e.  CC )
150118, 121, 130, 133, 134, 140, 149fsumtscop 12575 . . . 4  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( 2  -  ( 2  /  ( sqr `  ( ( A  +  1 )  - 
1 ) ) ) ) )
151 pncan 9303 . . . . . . . . 9  |-  ( ( n  e.  CC  /\  1  e.  CC )  ->  ( ( n  + 
1 )  -  1 )  =  n )
15232, 33, 151sylancl 644 . . . . . . . 8  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( n  +  1 )  - 
1 )  =  n )
153152fveq2d 5724 . . . . . . 7  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( sqr `  (
( n  +  1 )  -  1 ) )  =  ( sqr `  n ) )
154153oveq2d 6089 . . . . . 6  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( 2  / 
( sqr `  (
( n  +  1 )  -  1 ) ) )  =  ( 2  /  ( sqr `  n ) ) )
155154oveq2d 6089 . . . . 5  |-  ( ( A  e.  NN  /\  n  e.  ( 2 ... A ) )  ->  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  ( ( n  + 
1 )  -  1 ) ) ) )  =  ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )
156155sumeq2dv 12489 . . . 4  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  ( ( n  + 
1 )  -  1 ) ) ) )  =  sum_ n  e.  ( 2 ... A ) ( ( 2  / 
( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) ) )
157 nncn 10000 . . . . . . . 8  |-  ( A  e.  NN  ->  A  e.  CC )
158 pncan 9303 . . . . . . . 8  |-  ( ( A  e.  CC  /\  1  e.  CC )  ->  ( ( A  + 
1 )  -  1 )  =  A )
159157, 33, 158sylancl 644 . . . . . . 7  |-  ( A  e.  NN  ->  (
( A  +  1 )  -  1 )  =  A )
160159fveq2d 5724 . . . . . 6  |-  ( A  e.  NN  ->  ( sqr `  ( ( A  +  1 )  - 
1 ) )  =  ( sqr `  A
) )
161160oveq2d 6089 . . . . 5  |-  ( A  e.  NN  ->  (
2  /  ( sqr `  ( ( A  + 
1 )  -  1 ) ) )  =  ( 2  /  ( sqr `  A ) ) )
162161oveq2d 6089 . . . 4  |-  ( A  e.  NN  ->  (
2  -  ( 2  /  ( sqr `  (
( A  +  1 )  -  1 ) ) ) )  =  ( 2  -  (
2  /  ( sqr `  A ) ) ) )
163150, 156, 1623eqtr3d 2475 . . 3  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  =  ( 2  -  ( 2  /  ( sqr `  A ) ) ) )
164 2rp 10609 . . . . . 6  |-  2  e.  RR+
165 nnrp 10613 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  RR+ )
166165rpsqrcld 12206 . . . . . 6  |-  ( A  e.  NN  ->  ( sqr `  A )  e.  RR+ )
167 rpdivcl 10626 . . . . . 6  |-  ( ( 2  e.  RR+  /\  ( sqr `  A )  e.  RR+ )  ->  ( 2  /  ( sqr `  A
) )  e.  RR+ )
168164, 166, 167sylancr 645 . . . . 5  |-  ( A  e.  NN  ->  (
2  /  ( sqr `  A ) )  e.  RR+ )
169168rpge0d 10644 . . . 4  |-  ( A  e.  NN  ->  0  <_  ( 2  /  ( sqr `  A ) ) )
170168rpred 10640 . . . . 5  |-  ( A  e.  NN  ->  (
2  /  ( sqr `  A ) )  e.  RR )
171 subge02 9535 . . . . 5  |-  ( ( 2  e.  RR  /\  ( 2  /  ( sqr `  A ) )  e.  RR )  -> 
( 0  <_  (
2  /  ( sqr `  A ) )  <->  ( 2  -  ( 2  / 
( sqr `  A
) ) )  <_ 
2 ) )
17215, 170, 171sylancr 645 . . . 4  |-  ( A  e.  NN  ->  (
0  <_  ( 2  /  ( sqr `  A
) )  <->  ( 2  -  ( 2  / 
( sqr `  A
) ) )  <_ 
2 ) )
173169, 172mpbid 202 . . 3  |-  ( A  e.  NN  ->  (
2  -  ( 2  /  ( sqr `  A
) ) )  <_ 
2 )
174163, 173eqbrtrd 4224 . 2  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( 2  /  ( sqr `  (
n  -  1 ) ) )  -  (
2  /  ( sqr `  n ) ) )  <_  2 )
17514, 24, 25, 115, 174letrd 9219 1  |-  ( A  e.  NN  ->  sum_ n  e.  ( 2 ... A
) ( ( log `  n )  /  (
n  x.  ( n  -  1 ) ) )  <_  2 )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    = wceq 1652    e. wcel 1725    =/= wne 2598   class class class wbr 4204   ` cfv 5446  (class class class)co 6073   CCcc 8980   RRcr 8981   0cc0 8982   1c1 8983    + caddc 8985    x. cmul 8987    < clt 9112    <_ cle 9113    - cmin 9283    / cdiv 9669   NNcn 9992   2c2 10041   ZZ>=cuz 10480   RR+crp 10604   ...cfz 11035   ^cexp 11374   sqrcsqr 12030   sum_csu 12471   logclog 20444
This theorem is referenced by:  rplogsumlem2  21171
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7588  ax-cnex 9038  ax-resscn 9039  ax-1cn 9040  ax-icn 9041  ax-addcl 9042  ax-addrcl 9043  ax-mulcl 9044  ax-mulrcl 9045  ax-mulcom 9046  ax-addass 9047  ax-mulass 9048  ax-distr 9049  ax-i2m1 9050  ax-1ne0 9051  ax-1rid 9052  ax-rnegex 9053  ax-rrecex 9054  ax-cnre 9055  ax-pre-lttri 9056  ax-pre-lttrn 9057  ax-pre-ltadd 9058  ax-pre-mulgt0 9059  ax-pre-sup 9060  ax-addf 9061  ax-mulf 9062
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-iin 4088  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-of 6297  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-2o 6717  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-ixp 7056  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-fi 7408  df-sup 7438  df-oi 7471  df-card 7818  df-cda 8040  df-pnf 9114  df-mnf 9115  df-xr 9116  df-ltxr 9117  df-le 9118  df-sub 9285  df-neg 9286  df-div 9670  df-nn 9993  df-2 10050  df-3 10051  df-4 10052  df-5 10053  df-6 10054  df-7 10055  df-8 10056  df-9 10057  df-10 10058  df-n0 10214  df-z 10275  df-dec 10375  df-uz 10481  df-q 10567  df-rp 10605  df-xneg 10702  df-xadd 10703  df-xmul 10704  df-ioo 10912  df-ioc 10913  df-ico 10914  df-icc 10915  df-fz 11036  df-fzo 11128  df-fl 11194  df-mod 11243  df-seq 11316  df-exp 11375  df-fac 11559  df-bc 11586  df-hash 11611  df-shft 11874  df-cj 11896  df-re 11897  df-im 11898  df-sqr 12032  df-abs 12033  df-limsup 12257  df-clim 12274  df-rlim 12275  df-sum 12472  df-ef 12662  df-sin 12664  df-cos 12665  df-tan 12666  df-pi 12667  df-struct 13463  df-ndx 13464  df-slot 13465  df-base 13466  df-sets 13467  df-ress 13468  df-plusg 13534  df-mulr 13535  df-starv 13536  df-sca 13537  df-vsca 13538  df-tset 13540  df-ple 13541  df-ds 13543  df-unif 13544  df-hom 13545  df-cco 13546  df-rest 13642  df-topn 13643  df-topgen 13659  df-pt 13660  df-prds 13663  df-xrs 13718  df-0g 13719  df-gsum 13720  df-qtop 13725  df-imas 13726  df-xps 13728  df-mre 13803  df-mrc 13804  df-acs 13806  df-mnd 14682  df-submnd 14731  df-mulg 14807  df-cntz 15108  df-cmn 15406  df-psmet 16686  df-xmet 16687  df-met 16688  df-bl 16689  df-mopn 16690  df-fbas 16691  df-fg 16692  df-cnfld 16696  df-top 16955  df-bases 16957  df-topon 16958  df-topsp 16959  df-cld 17075  df-ntr 17076  df-cls 17077  df-nei 17154  df-lp 17192  df-perf 17193  df-cn 17283  df-cnp 17284  df-haus 17371  df-cmp 17442  df-tx 17586  df-hmeo 17779  df-fil 17870  df-fm 17962  df-flim 17963  df-flf 17964  df-xms 18342  df-ms 18343  df-tms 18344  df-cncf 18900  df-limc 19745  df-dv 19746  df-log 20446  df-cxp 20447
  Copyright terms: Public domain W3C validator