MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen Unicode version

Theorem rpnnen 12505
Description: The cardinality of the continuum is the same as the powerset of  om. This is a stronger statement than ruc 12521, which only asserts that  RR is uncountable, i.e. has a cardinality larger than  om. The main proof is in two parts, rpnnen1 10347 and rpnnen2 12504, each showing an injection in one direction, and this last part uses sbth 6981 to prove that the sets are equinumerous. By constructing explicit injections, we avoid the use of AC. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
rpnnen  |-  RR  ~~  ~P NN

Proof of Theorem rpnnen
Dummy variables  j 
k  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 5865 . . . . . 6  |-  ( m  =  n  ->  (
m  /  k )  =  ( n  / 
k ) )
21breq1d 4033 . . . . 5  |-  ( m  =  n  ->  (
( m  /  k
)  <  x  <->  ( n  /  k )  < 
x ) )
32cbvrabv 2787 . . . 4  |-  { m  e.  ZZ  |  ( m  /  k )  < 
x }  =  {
n  e.  ZZ  | 
( n  /  k
)  <  x }
4 oveq2 5866 . . . . . . . . . . 11  |-  ( j  =  k  ->  (
m  /  j )  =  ( m  / 
k ) )
54breq1d 4033 . . . . . . . . . 10  |-  ( j  =  k  ->  (
( m  /  j
)  <  y  <->  ( m  /  k )  < 
y ) )
65rabbidv 2780 . . . . . . . . 9  |-  ( j  =  k  ->  { m  e.  ZZ  |  ( m  /  j )  < 
y }  =  {
m  e.  ZZ  | 
( m  /  k
)  <  y }
)
76supeq1d 7199 . . . . . . . 8  |-  ( j  =  k  ->  sup ( { m  e.  ZZ  |  ( m  / 
j )  <  y } ,  RR ,  <  )  =  sup ( { m  e.  ZZ  |  ( m  / 
k )  <  y } ,  RR ,  <  ) )
8 id 19 . . . . . . . 8  |-  ( j  =  k  ->  j  =  k )
97, 8oveq12d 5876 . . . . . . 7  |-  ( j  =  k  ->  ( sup ( { m  e.  ZZ  |  ( m  /  j )  < 
y } ,  RR ,  <  )  /  j
)  =  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
y } ,  RR ,  <  )  /  k
) )
109cbvmptv 4111 . . . . . 6  |-  ( j  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  j )  < 
y } ,  RR ,  <  )  /  j
) )  =  ( k  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
y } ,  RR ,  <  )  /  k
) )
11 breq2 4027 . . . . . . . . . 10  |-  ( y  =  x  ->  (
( m  /  k
)  <  y  <->  ( m  /  k )  < 
x ) )
1211rabbidv 2780 . . . . . . . . 9  |-  ( y  =  x  ->  { m  e.  ZZ  |  ( m  /  k )  < 
y }  =  {
m  e.  ZZ  | 
( m  /  k
)  <  x }
)
1312supeq1d 7199 . . . . . . . 8  |-  ( y  =  x  ->  sup ( { m  e.  ZZ  |  ( m  / 
k )  <  y } ,  RR ,  <  )  =  sup ( { m  e.  ZZ  |  ( m  / 
k )  <  x } ,  RR ,  <  ) )
1413oveq1d 5873 . . . . . . 7  |-  ( y  =  x  ->  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
y } ,  RR ,  <  )  /  k
)  =  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
x } ,  RR ,  <  )  /  k
) )
1514mpteq2dv 4107 . . . . . 6  |-  ( y  =  x  ->  (
k  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
y } ,  RR ,  <  )  /  k
) )  =  ( k  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
x } ,  RR ,  <  )  /  k
) ) )
1610, 15syl5eq 2327 . . . . 5  |-  ( y  =  x  ->  (
j  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  j )  < 
y } ,  RR ,  <  )  /  j
) )  =  ( k  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
x } ,  RR ,  <  )  /  k
) ) )
1716cbvmptv 4111 . . . 4  |-  ( y  e.  RR  |->  ( j  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  j )  < 
y } ,  RR ,  <  )  /  j
) ) )  =  ( x  e.  RR  |->  ( k  e.  NN  |->  ( sup ( { m  e.  ZZ  |  ( m  /  k )  < 
x } ,  RR ,  <  )  /  k
) ) )
183, 17rpnnen1 10347 . . 3  |-  RR  ~<_  ( QQ 
^m  NN )
19 qnnen 12492 . . . . . . 7  |-  QQ  ~~  NN
20 nnex 9752 . . . . . . . 8  |-  NN  e.  _V
2120canth2 7014 . . . . . . 7  |-  NN  ~<  ~P NN
22 ensdomtr 6997 . . . . . . 7  |-  ( ( QQ  ~~  NN  /\  NN  ~<  ~P NN )  ->  QQ  ~<  ~P NN )
2319, 21, 22mp2an 653 . . . . . 6  |-  QQ  ~<  ~P NN
24 sdomdom 6889 . . . . . 6  |-  ( QQ 
~<  ~P NN  ->  QQ  ~<_  ~P NN )
25 mapdom1 7026 . . . . . 6  |-  ( QQ  ~<_  ~P NN  ->  ( QQ  ^m  NN )  ~<_  ( ~P NN  ^m  NN ) )
2623, 24, 25mp2b 9 . . . . 5  |-  ( QQ 
^m  NN )  ~<_  ( ~P NN  ^m  NN )
2720pw2en 6969 . . . . . 6  |-  ~P NN  ~~  ( 2o  ^m  NN )
2820enref 6894 . . . . . 6  |-  NN  ~~  NN
29 mapen 7025 . . . . . 6  |-  ( ( ~P NN  ~~  ( 2o  ^m  NN )  /\  NN  ~~  NN )  -> 
( ~P NN  ^m  NN )  ~~  ( ( 2o  ^m  NN )  ^m  NN ) )
3027, 28, 29mp2an 653 . . . . 5  |-  ( ~P NN  ^m  NN ) 
~~  ( ( 2o 
^m  NN )  ^m  NN )
31 domentr 6920 . . . . 5  |-  ( ( ( QQ  ^m  NN )  ~<_  ( ~P NN  ^m  NN )  /\  ( ~P NN  ^m  NN ) 
~~  ( ( 2o 
^m  NN )  ^m  NN ) )  ->  ( QQ  ^m  NN )  ~<_  ( ( 2o  ^m  NN )  ^m  NN ) )
3226, 30, 31mp2an 653 . . . 4  |-  ( QQ 
^m  NN )  ~<_  ( ( 2o  ^m  NN )  ^m  NN )
33 2onn 6638 . . . . . . 7  |-  2o  e.  om
34 mapxpen 7027 . . . . . . 7  |-  ( ( 2o  e.  om  /\  NN  e.  _V  /\  NN  e.  _V )  ->  (
( 2o  ^m  NN )  ^m  NN )  ~~  ( 2o  ^m  ( NN  X.  NN ) ) )
3533, 20, 20, 34mp3an 1277 . . . . . 6  |-  ( ( 2o  ^m  NN )  ^m  NN )  ~~  ( 2o  ^m  ( NN  X.  NN ) )
3633elexi 2797 . . . . . . . 8  |-  2o  e.  _V
3736enref 6894 . . . . . . 7  |-  2o  ~~  2o
38 xpnnen 12487 . . . . . . 7  |-  ( NN 
X.  NN )  ~~  NN
39 mapen 7025 . . . . . . 7  |-  ( ( 2o  ~~  2o  /\  ( NN  X.  NN )  ~~  NN )  -> 
( 2o  ^m  ( NN  X.  NN ) ) 
~~  ( 2o  ^m  NN ) )
4037, 38, 39mp2an 653 . . . . . 6  |-  ( 2o 
^m  ( NN  X.  NN ) )  ~~  ( 2o  ^m  NN )
4135, 40entri 6915 . . . . 5  |-  ( ( 2o  ^m  NN )  ^m  NN )  ~~  ( 2o  ^m  NN )
4241, 27entr4i 6918 . . . 4  |-  ( ( 2o  ^m  NN )  ^m  NN )  ~~  ~P NN
43 domentr 6920 . . . 4  |-  ( ( ( QQ  ^m  NN )  ~<_  ( ( 2o 
^m  NN )  ^m  NN )  /\  (
( 2o  ^m  NN )  ^m  NN )  ~~  ~P NN )  ->  ( QQ  ^m  NN )  ~<_  ~P NN )
4432, 42, 43mp2an 653 . . 3  |-  ( QQ 
^m  NN )  ~<_  ~P NN
45 domtr 6914 . . 3  |-  ( ( RR  ~<_  ( QQ  ^m  NN )  /\  ( QQ  ^m  NN )  ~<_  ~P NN )  ->  RR  ~<_  ~P NN )
4618, 44, 45mp2an 653 . 2  |-  RR  ~<_  ~P NN
47 elequ2 1689 . . . . . . . 8  |-  ( y  =  x  ->  (
n  e.  y  <->  n  e.  x ) )
4847ifbid 3583 . . . . . . 7  |-  ( y  =  x  ->  if ( n  e.  y ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( n  e.  x ,  ( ( 1  / 
3 ) ^ n
) ,  0 ) )
4948mpteq2dv 4107 . . . . . 6  |-  ( y  =  x  ->  (
n  e.  NN  |->  if ( n  e.  y ,  ( ( 1  /  3 ) ^
n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
50 elequ1 1687 . . . . . . . 8  |-  ( n  =  k  ->  (
n  e.  x  <->  k  e.  x ) )
51 oveq2 5866 . . . . . . . 8  |-  ( n  =  k  ->  (
( 1  /  3
) ^ n )  =  ( ( 1  /  3 ) ^
k ) )
52 eqidd 2284 . . . . . . . 8  |-  ( n  =  k  ->  0  =  0 )
5350, 51, 52ifbieq12d 3587 . . . . . . 7  |-  ( n  =  k  ->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( k  e.  x ,  ( ( 1  / 
3 ) ^ k
) ,  0 ) )
5453cbvmptv 4111 . . . . . 6  |-  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  / 
3 ) ^ n
) ,  0 ) )  =  ( k  e.  NN  |->  if ( k  e.  x ,  ( ( 1  / 
3 ) ^ k
) ,  0 ) )
5549, 54syl6eq 2331 . . . . 5  |-  ( y  =  x  ->  (
n  e.  NN  |->  if ( n  e.  y ,  ( ( 1  /  3 ) ^
n ) ,  0 ) )  =  ( k  e.  NN  |->  if ( k  e.  x ,  ( ( 1  /  3 ) ^
k ) ,  0 ) ) )
5655cbvmptv 4111 . . . 4  |-  ( y  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  y ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )  =  ( x  e.  ~P NN  |->  ( k  e.  NN  |->  if ( k  e.  x ,  ( ( 1  /  3
) ^ k ) ,  0 ) ) )
5756rpnnen2 12504 . . 3  |-  ~P NN  ~<_  ( 0 [,] 1
)
58 reex 8828 . . . 4  |-  RR  e.  _V
59 0re 8838 . . . . 5  |-  0  e.  RR
60 1re 8837 . . . . 5  |-  1  e.  RR
61 iccssre 10731 . . . . 5  |-  ( ( 0  e.  RR  /\  1  e.  RR )  ->  ( 0 [,] 1
)  C_  RR )
6259, 60, 61mp2an 653 . . . 4  |-  ( 0 [,] 1 )  C_  RR
63 ssdomg 6907 . . . 4  |-  ( RR  e.  _V  ->  (
( 0 [,] 1
)  C_  RR  ->  ( 0 [,] 1 )  ~<_  RR ) )
6458, 62, 63mp2 17 . . 3  |-  ( 0 [,] 1 )  ~<_  RR
65 domtr 6914 . . 3  |-  ( ( ~P NN  ~<_  ( 0 [,] 1 )  /\  ( 0 [,] 1
)  ~<_  RR )  ->  ~P NN  ~<_  RR )
6657, 64, 65mp2an 653 . 2  |-  ~P NN  ~<_  RR
67 sbth 6981 . 2  |-  ( ( RR  ~<_  ~P NN  /\  ~P NN 
~<_  RR )  ->  RR  ~~ 
~P NN )
6846, 66, 67mp2an 653 1  |-  RR  ~~  ~P NN
Colors of variables: wff set class
Syntax hints:    = wceq 1623    e. wcel 1684   {crab 2547   _Vcvv 2788    C_ wss 3152   ifcif 3565   ~Pcpw 3625   class class class wbr 4023    e. cmpt 4077   omcom 4656    X. cxp 4687  (class class class)co 5858   2oc2o 6473    ^m cmap 6772    ~~ cen 6860    ~<_ cdom 6861    ~< csdm 6862   supcsup 7193   RRcr 8736   0cc0 8737   1c1 8738    < clt 8867    / cdiv 9423   NNcn 9746   3c3 9796   ZZcz 10024   QQcq 10316   [,]cicc 10659   ^cexp 11104
This theorem is referenced by:  rexpen  12506  cpnnen  12507  rucALT  12508  cnso  12525  2ndcredom  17176  opnreen  18336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-2o 6480  df-oadd 6483  df-omul 6484  df-er 6660  df-map 6774  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-acn 7575  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-q 10317  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator