MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2 Unicode version

Theorem rpnnen2 12504
Description: The other half of rpnnen 12505, where we show an injection from sets of natural numbers to real numbers. The obvious choice for this is binary expansion, but it has the unfortunate property that it does not produce an injection on numbers which end with all 0's or all 1's (the more well-known decimal version of this is 0.999... 12337). Instead, we opt for a ternary expansion, which produces (a scaled version of) the Cantor set. Since the Cantor set is riddled with gaps, we can show that any two sequences that are not equal must differ somewhere, and when they do, they are placed a finite distance apart, thus ensuring that the map is injective.

Our map assigns to each subset  A of the natural numbers the number  sum_ k  e.  A ( 3 ^
-u k )  = 
sum_ k  e.  NN ( ( F `  A ) `  k
), where  ( ( F `  A ) `  k )  =  if ( k  e.  A ,  ( 3 ^
-u k ) ,  0 ) ) (rpnnen2lem1 12493). This is an infinite sum of real numbers (rpnnen2lem2 12494), and since  A 
C_  B implies  ( F `  A )  <_  ( F `  B ) (rpnnen2lem4 12496) and  ( F `  NN ) converges to  1  /  2 (rpnnen2lem3 12495) by geoisum1 12335, the sum is convergent to some real (rpnnen2lem5 12497 and rpnnen2lem6 12498) by the comparison test for convergence cvgcmp 12274. The comparison test also tells us that  A  C_  B implies  sum_ ( F `  A )  <_ 
sum_ ( F `  B ) (rpnnen2lem7 12499).

Putting it all together, if we have two sets  x  =/=  y, there must differ somewhere, and so there must be an  m such that  A. n  < 
m ( n  e.  x  <->  n  e.  y
) but  m  e.  ( x  \  y ) or vice versa. In this case, we split off the first  m  -  1 terms (rpnnen2lem8 12500) and cancel them (rpnnen2lem10 12502), since these are the same for both sets. For the remaining terms, we use the subset property to establish that  sum_ ( F `
 y )  <_  sum_ ( F `  ( NN  \  { m }
) ) and  sum_ ( F `
 { m }
)  <_  sum_ ( F `
 x ) (where these sums are only over  ( ZZ>= `  m
)), and since  sum_ ( F `
 ( NN  \  { m } ) )  =  ( 3 ^ -u m )  /  2 (rpnnen2lem9 12501) and  sum_ ( F `  { m } )  =  ( 3 ^
-u m ), we establish that  sum_ ( F `
 y )  <  sum_ ( F `  x
) (rpnnen2lem11 12503) so that they must be different. By contraposition, we find that this map is an injection. (Contributed by Mario Carneiro, 13-May-2013.) (Proof shortened by Mario Carneiro, 30-Apr-2014.)

Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2  |-  ~P NN  ~<_  ( 0 [,] 1
)
Distinct variable group:    x, n
Allowed substitution hints:    F( x, n)

Proof of Theorem rpnnen2
Dummy variables  m  y  z  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovex 5883 . 2  |-  ( 0 [,] 1 )  e. 
_V
2 elpwi 3633 . . . . 5  |-  ( y  e.  ~P NN  ->  y 
C_  NN )
3 nnuz 10263 . . . . . . 7  |-  NN  =  ( ZZ>= `  1 )
43sumeq1i 12171 . . . . . 6  |-  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  y ) `
 k )
5 1nn 9757 . . . . . . 7  |-  1  e.  NN
6 rpnnen2.1 . . . . . . . 8  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
76rpnnen2lem6 12498 . . . . . . 7  |-  ( ( y  C_  NN  /\  1  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  e.  RR )
85, 7mpan2 652 . . . . . 6  |-  ( y 
C_  NN  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  e.  RR )
94, 8syl5eqel 2367 . . . . 5  |-  ( y 
C_  NN  ->  sum_ k  e.  NN  ( ( F `
 y ) `  k )  e.  RR )
102, 9syl 15 . . . 4  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  e.  RR )
11 1z 10053 . . . . . 6  |-  1  e.  ZZ
1211a1i 10 . . . . 5  |-  ( y  e.  ~P NN  ->  1  e.  ZZ )
13 eqidd 2284 . . . . 5  |-  ( ( y  e.  ~P NN  /\  k  e.  NN )  ->  ( ( F `
 y ) `  k )  =  ( ( F `  y
) `  k )
)
146rpnnen2lem2 12494 . . . . . . 7  |-  ( y 
C_  NN  ->  ( F `
 y ) : NN --> RR )
152, 14syl 15 . . . . . 6  |-  ( y  e.  ~P NN  ->  ( F `  y ) : NN --> RR )
16 ffvelrn 5663 . . . . . 6  |-  ( ( ( F `  y
) : NN --> RR  /\  k  e.  NN )  ->  ( ( F `  y ) `  k
)  e.  RR )
1715, 16sylan 457 . . . . 5  |-  ( ( y  e.  ~P NN  /\  k  e.  NN )  ->  ( ( F `
 y ) `  k )  e.  RR )
186rpnnen2lem5 12497 . . . . . 6  |-  ( ( y  C_  NN  /\  1  e.  NN )  ->  seq  1 (  +  , 
( F `  y
) )  e.  dom  ~~>  )
192, 5, 18sylancl 643 . . . . 5  |-  ( y  e.  ~P NN  ->  seq  1 (  +  , 
( F `  y
) )  e.  dom  ~~>  )
20 ssid 3197 . . . . . . . 8  |-  NN  C_  NN
216rpnnen2lem4 12496 . . . . . . . 8  |-  ( ( y  C_  NN  /\  NN  C_  NN  /\  k  e.  NN )  ->  (
0  <_  ( ( F `  y ) `  k )  /\  (
( F `  y
) `  k )  <_  ( ( F `  NN ) `  k ) ) )
2220, 21mp3an2 1265 . . . . . . 7  |-  ( ( y  C_  NN  /\  k  e.  NN )  ->  (
0  <_  ( ( F `  y ) `  k )  /\  (
( F `  y
) `  k )  <_  ( ( F `  NN ) `  k ) ) )
2322simpld 445 . . . . . 6  |-  ( ( y  C_  NN  /\  k  e.  NN )  ->  0  <_  ( ( F `  y ) `  k
) )
242, 23sylan 457 . . . . 5  |-  ( ( y  e.  ~P NN  /\  k  e.  NN )  ->  0  <_  (
( F `  y
) `  k )
)
253, 12, 13, 17, 19, 24isumge0 12229 . . . 4  |-  ( y  e.  ~P NN  ->  0  <_  sum_ k  e.  NN  ( ( F `  y ) `  k
) )
26 1re 8837 . . . . . . 7  |-  1  e.  RR
27 rehalfcl 9938 . . . . . . 7  |-  ( 1  e.  RR  ->  (
1  /  2 )  e.  RR )
2826, 27ax-mp 8 . . . . . 6  |-  ( 1  /  2 )  e.  RR
2928a1i 10 . . . . 5  |-  ( y  e.  ~P NN  ->  ( 1  /  2 )  e.  RR )
3026a1i 10 . . . . 5  |-  ( y  e.  ~P NN  ->  1  e.  RR )
316rpnnen2lem7 12499 . . . . . . . . 9  |-  ( ( y  C_  NN  /\  NN  C_  NN  /\  1  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  <_  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  NN ) `  k ) )
3220, 5, 31mp3an23 1269 . . . . . . . 8  |-  ( y 
C_  NN  ->  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  y ) `  k
)  <_  sum_ k  e.  ( ZZ>= `  1 )
( ( F `  NN ) `  k ) )
332, 32syl 15 . . . . . . 7  |-  ( y  e.  ~P NN  ->  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  y ) `
 k )  <_  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  NN ) `
 k ) )
34 eqid 2283 . . . . . . . 8  |-  ( ZZ>= ` 
1 )  =  (
ZZ>= `  1 )
35 eqidd 2284 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( F `  NN ) `  k )  =  ( ( F `
 NN ) `  k ) )
36 elnnuz 10264 . . . . . . . . . 10  |-  ( k  e.  NN  <->  k  e.  ( ZZ>= `  1 )
)
376rpnnen2lem2 12494 . . . . . . . . . . . . 13  |-  ( NN  C_  NN  ->  ( F `  NN ) : NN --> RR )
3820, 37ax-mp 8 . . . . . . . . . . . 12  |-  ( F `
 NN ) : NN --> RR
3938ffvelrni 5664 . . . . . . . . . . 11  |-  ( k  e.  NN  ->  (
( F `  NN ) `  k )  e.  RR )
4039recnd 8861 . . . . . . . . . 10  |-  ( k  e.  NN  ->  (
( F `  NN ) `  k )  e.  CC )
4136, 40sylbir 204 . . . . . . . . 9  |-  ( k  e.  ( ZZ>= `  1
)  ->  ( ( F `  NN ) `  k )  e.  CC )
4241adantl 452 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  k  e.  ( ZZ>= ` 
1 ) )  -> 
( ( F `  NN ) `  k )  e.  CC )
436rpnnen2lem3 12495 . . . . . . . . 9  |-  seq  1
(  +  ,  ( F `  NN ) )  ~~>  ( 1  / 
2 )
4443a1i 10 . . . . . . . 8  |-  ( y  e.  ~P NN  ->  seq  1 (  +  , 
( F `  NN ) )  ~~>  ( 1  /  2 ) )
4534, 12, 35, 42, 44isumclim 12220 . . . . . . 7  |-  ( y  e.  ~P NN  ->  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  NN ) `
 k )  =  ( 1  /  2
) )
4633, 45breqtrd 4047 . . . . . 6  |-  ( y  e.  ~P NN  ->  sum_ k  e.  ( ZZ>= ` 
1 ) ( ( F `  y ) `
 k )  <_ 
( 1  /  2
) )
474, 46syl5eqbr 4056 . . . . 5  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  <_  ( 1  /  2
) )
48 halflt1 9933 . . . . . . 7  |-  ( 1  /  2 )  <  1
4928, 26, 48ltleii 8941 . . . . . 6  |-  ( 1  /  2 )  <_ 
1
5049a1i 10 . . . . 5  |-  ( y  e.  ~P NN  ->  ( 1  /  2 )  <_  1 )
5110, 29, 30, 47, 50letrd 8973 . . . 4  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  <_  1 )
52 0re 8838 . . . . 5  |-  0  e.  RR
5352, 26elicc2i 10716 . . . 4  |-  ( sum_ k  e.  NN  (
( F `  y
) `  k )  e.  ( 0 [,] 1
)  <->  ( sum_ k  e.  NN  ( ( F `
 y ) `  k )  e.  RR  /\  0  <_  sum_ k  e.  NN  ( ( F `
 y ) `  k )  /\  sum_ k  e.  NN  (
( F `  y
) `  k )  <_  1 ) )
5410, 25, 51, 53syl3anbrc 1136 . . 3  |-  ( y  e.  ~P NN  ->  sum_ k  e.  NN  (
( F `  y
) `  k )  e.  ( 0 [,] 1
) )
55 elpwi 3633 . . . . . . . . . . 11  |-  ( z  e.  ~P NN  ->  z 
C_  NN )
56 ssdifss 3307 . . . . . . . . . . . 12  |-  ( y 
C_  NN  ->  ( y 
\  z )  C_  NN )
57 ssdifss 3307 . . . . . . . . . . . 12  |-  ( z 
C_  NN  ->  ( z 
\  y )  C_  NN )
58 unss 3349 . . . . . . . . . . . . 13  |-  ( ( ( y  \  z
)  C_  NN  /\  (
z  \  y )  C_  NN )  <->  ( (
y  \  z )  u.  ( z  \  y
) )  C_  NN )
5958biimpi 186 . . . . . . . . . . . 12  |-  ( ( ( y  \  z
)  C_  NN  /\  (
z  \  y )  C_  NN )  ->  (
( y  \  z
)  u.  ( z 
\  y ) ) 
C_  NN )
6056, 57, 59syl2an 463 . . . . . . . . . . 11  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  (
( y  \  z
)  u.  ( z 
\  y ) ) 
C_  NN )
612, 55, 60syl2an 463 . . . . . . . . . 10  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( ( y 
\  z )  u.  ( z  \  y
) )  C_  NN )
62 eqss 3194 . . . . . . . . . . . . 13  |-  ( y  =  z  <->  ( y  C_  z  /\  z  C_  y ) )
63 ssdif0 3513 . . . . . . . . . . . . . 14  |-  ( y 
C_  z  <->  ( y  \  z )  =  (/) )
64 ssdif0 3513 . . . . . . . . . . . . . 14  |-  ( z 
C_  y  <->  ( z  \  y )  =  (/) )
6563, 64anbi12i 678 . . . . . . . . . . . . 13  |-  ( ( y  C_  z  /\  z  C_  y )  <->  ( (
y  \  z )  =  (/)  /\  ( z 
\  y )  =  (/) ) )
66 un00 3490 . . . . . . . . . . . . 13  |-  ( ( ( y  \  z
)  =  (/)  /\  (
z  \  y )  =  (/) )  <->  ( (
y  \  z )  u.  ( z  \  y
) )  =  (/) )
6762, 65, 663bitri 262 . . . . . . . . . . . 12  |-  ( y  =  z  <->  ( (
y  \  z )  u.  ( z  \  y
) )  =  (/) )
6867necon3bii 2478 . . . . . . . . . . 11  |-  ( y  =/=  z  <->  ( (
y  \  z )  u.  ( z  \  y
) )  =/=  (/) )
6968biimpi 186 . . . . . . . . . 10  |-  ( y  =/=  z  ->  (
( y  \  z
)  u.  ( z 
\  y ) )  =/=  (/) )
70 nnwo 10284 . . . . . . . . . 10  |-  ( ( ( ( y  \ 
z )  u.  (
z  \  y )
)  C_  NN  /\  (
( y  \  z
)  u.  ( z 
\  y ) )  =/=  (/) )  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n
)
7161, 69, 70syl2an 463 . . . . . . . . 9  |-  ( ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  /\  y  =/=  z )  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n
)
7271ex 423 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n
) )
7361sselda 3180 . . . . . . . . . 10  |-  ( ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  /\  m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) )  ->  m  e.  NN )
74 df-ral 2548 . . . . . . . . . . . 12  |-  ( A. n  e.  ( (
y  \  z )  u.  ( z  \  y
) ) m  <_  n 
<-> 
A. n ( n  e.  ( ( y 
\  z )  u.  ( z  \  y
) )  ->  m  <_  n ) )
75 con34b 283 . . . . . . . . . . . . . 14  |-  ( ( n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) )  ->  m  <_  n )  <->  ( -.  m  <_  n  ->  -.  n  e.  ( (
y  \  z )  u.  ( z  \  y
) ) ) )
76 eldif 3162 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( y  \ 
z )  <->  ( n  e.  y  /\  -.  n  e.  z ) )
77 eldif 3162 . . . . . . . . . . . . . . . . . 18  |-  ( n  e.  ( z  \ 
y )  <->  ( n  e.  z  /\  -.  n  e.  y ) )
7876, 77orbi12i 507 . . . . . . . . . . . . . . . . 17  |-  ( ( n  e.  ( y 
\  z )  \/  n  e.  ( z 
\  y ) )  <-> 
( ( n  e.  y  /\  -.  n  e.  z )  \/  (
n  e.  z  /\  -.  n  e.  y
) ) )
79 elun 3316 . . . . . . . . . . . . . . . . 17  |-  ( n  e.  ( ( y 
\  z )  u.  ( z  \  y
) )  <->  ( n  e.  ( y  \  z
)  \/  n  e.  ( z  \  y
) ) )
80 xor 861 . . . . . . . . . . . . . . . . 17  |-  ( -.  ( n  e.  y  <-> 
n  e.  z )  <-> 
( ( n  e.  y  /\  -.  n  e.  z )  \/  (
n  e.  z  /\  -.  n  e.  y
) ) )
8178, 79, 803bitr4ri 269 . . . . . . . . . . . . . . . 16  |-  ( -.  ( n  e.  y  <-> 
n  e.  z )  <-> 
n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) ) )
8281con1bii 321 . . . . . . . . . . . . . . 15  |-  ( -.  n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) )  <->  ( n  e.  y  <->  n  e.  z
) )
8382imbi2i 303 . . . . . . . . . . . . . 14  |-  ( ( -.  m  <_  n  ->  -.  n  e.  ( ( y  \  z
)  u.  ( z 
\  y ) ) )  <->  ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) ) )
8475, 83bitri 240 . . . . . . . . . . . . 13  |-  ( ( n  e.  ( ( y  \  z )  u.  ( z  \ 
y ) )  ->  m  <_  n )  <->  ( -.  m  <_  n  ->  (
n  e.  y  <->  n  e.  z ) ) )
8584albii 1553 . . . . . . . . . . . 12  |-  ( A. n ( n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
)  ->  m  <_  n )  <->  A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z ) ) )
8674, 85bitri 240 . . . . . . . . . . 11  |-  ( A. n  e.  ( (
y  \  z )  u.  ( z  \  y
) ) m  <_  n 
<-> 
A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z ) ) )
87 alral 2601 . . . . . . . . . . . 12  |-  ( A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) )  ->  A. n  e.  NN  ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) ) )
88 nnre 9753 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  e.  RR )
89 nnre 9753 . . . . . . . . . . . . . . 15  |-  ( m  e.  NN  ->  m  e.  RR )
90 ltnle 8902 . . . . . . . . . . . . . . 15  |-  ( ( n  e.  RR  /\  m  e.  RR )  ->  ( n  <  m  <->  -.  m  <_  n )
)
9188, 89, 90syl2anr 464 . . . . . . . . . . . . . 14  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  ( n  <  m  <->  -.  m  <_  n )
)
9291imbi1d 308 . . . . . . . . . . . . 13  |-  ( ( m  e.  NN  /\  n  e.  NN )  ->  ( ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) )  <->  ( -.  m  <_  n  ->  (
n  e.  y  <->  n  e.  z ) ) ) )
9392ralbidva 2559 . . . . . . . . . . . 12  |-  ( m  e.  NN  ->  ( A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) )  <->  A. n  e.  NN  ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) ) ) )
9487, 93syl5ibr 212 . . . . . . . . . . 11  |-  ( m  e.  NN  ->  ( A. n ( -.  m  <_  n  ->  ( n  e.  y  <->  n  e.  z
) )  ->  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )
9586, 94syl5bi 208 . . . . . . . . . 10  |-  ( m  e.  NN  ->  ( A. n  e.  (
( y  \  z
)  u.  ( z 
\  y ) ) m  <_  n  ->  A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) ) ) )
9673, 95syl 15 . . . . . . . . 9  |-  ( ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  /\  m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) )  ->  ( A. n  e.  (
( y  \  z
)  u.  ( z 
\  y ) ) m  <_  n  ->  A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) ) ) )
9796reximdva 2655 . . . . . . . 8  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) m  <_  n  ->  E. m  e.  ( ( y  \  z
)  u.  ( z 
\  y ) ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) ) )
9872, 97syld 40 . . . . . . 7  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  E. m  e.  ( ( y  \ 
z )  u.  (
z  \  y )
) A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )
99 rexun 3355 . . . . . . 7  |-  ( E. m  e.  ( ( y  \  z )  u.  ( z  \ 
y ) ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  <->  ( E. m  e.  ( y  \  z ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  \/ 
E. m  e.  ( z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) ) )
10098, 99syl6ib 217 . . . . . 6  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  ( E. m  e.  ( y  \  z ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  \/ 
E. m  e.  ( z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) ) ) )
101 simpll 730 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  y  C_  NN )
102 simplr 731 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  z  C_  NN )
103 simprl 732 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  m  e.  ( y  \  z ) )
104 simprr 733 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) )
105 biid 227 . . . . . . . . . . 11  |-  ( sum_ k  e.  NN  (
( F `  y
) `  k )  =  sum_ k  e.  NN  ( ( F `  z ) `  k
)  <->  sum_ k  e.  NN  ( ( F `  y ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 z ) `  k ) )
1066, 101, 102, 103, 104, 105rpnnen2lem11 12503 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( y  \  z )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
)
107106expr 598 . . . . . . . . 9  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  m  e.  (
y  \  z )
)  ->  ( A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  ->  -.  sum_ k  e.  NN  ( ( F `  y ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 z ) `  k ) ) )
108107rexlimdva 2667 . . . . . . . 8  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  ( E. m  e.  (
y  \  z ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
109 simplr 731 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  z  C_  NN )
110 simpll 730 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  y  C_  NN )
111 simprl 732 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  m  e.  ( z  \  y ) )
112 simprr 733 . . . . . . . . . . . 12  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) )
113 bicom 191 . . . . . . . . . . . . . 14  |-  ( ( n  e.  z  <->  n  e.  y )  <->  ( n  e.  y  <->  n  e.  z
) )
114113imbi2i 303 . . . . . . . . . . . . 13  |-  ( ( n  <  m  -> 
( n  e.  z  <-> 
n  e.  y ) )  <->  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) )
115114ralbii 2567 . . . . . . . . . . . 12  |-  ( A. n  e.  NN  (
n  <  m  ->  ( n  e.  z  <->  n  e.  y ) )  <->  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) )
116112, 115sylibr 203 . . . . . . . . . . 11  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  z  <-> 
n  e.  y ) ) )
117 eqcom 2285 . . . . . . . . . . 11  |-  ( sum_ k  e.  NN  (
( F `  y
) `  k )  =  sum_ k  e.  NN  ( ( F `  z ) `  k
)  <->  sum_ k  e.  NN  ( ( F `  z ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 y ) `  k ) )
1186, 109, 110, 111, 116, 117rpnnen2lem11 12503 . . . . . . . . . 10  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  ( m  e.  ( z  \  y )  /\  A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) ) ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
)
119118expr 598 . . . . . . . . 9  |-  ( ( ( y  C_  NN  /\  z  C_  NN )  /\  m  e.  (
z  \  y )
)  ->  ( A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  ->  -.  sum_ k  e.  NN  ( ( F `  y ) `  k
)  =  sum_ k  e.  NN  ( ( F `
 z ) `  k ) ) )
120119rexlimdva 2667 . . . . . . . 8  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  ( E. m  e.  (
z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
121108, 120jaod 369 . . . . . . 7  |-  ( ( y  C_  NN  /\  z  C_  NN )  ->  (
( E. m  e.  ( y  \  z
) A. n  e.  NN  ( n  < 
m  ->  ( n  e.  y  <->  n  e.  z
) )  \/  E. m  e.  ( z  \  y ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) ) )  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
1222, 55, 121syl2an 463 . . . . . 6  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( ( E. m  e.  ( y 
\  z ) A. n  e.  NN  (
n  <  m  ->  ( n  e.  y  <->  n  e.  z ) )  \/ 
E. m  e.  ( z  \  y ) A. n  e.  NN  ( n  <  m  -> 
( n  e.  y  <-> 
n  e.  z ) ) )  ->  -.  sum_ k  e.  NN  (
( F `  y
) `  k )  =  sum_ k  e.  NN  ( ( F `  z ) `  k
) ) )
123100, 122syld 40 . . . . 5  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( y  =/=  z  ->  -.  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
) )
124123necon4ad 2507 . . . 4  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )  ->  y  =  z ) )
125 fveq2 5525 . . . . . 6  |-  ( y  =  z  ->  ( F `  y )  =  ( F `  z ) )
126125fveq1d 5527 . . . . 5  |-  ( y  =  z  ->  (
( F `  y
) `  k )  =  ( ( F `
 z ) `  k ) )
127126sumeq2sdv 12177 . . . 4  |-  ( y  =  z  ->  sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )
)
128124, 127impbid1 194 . . 3  |-  ( ( y  e.  ~P NN  /\  z  e.  ~P NN )  ->  ( sum_ k  e.  NN  ( ( F `
 y ) `  k )  =  sum_ k  e.  NN  (
( F `  z
) `  k )  <->  y  =  z ) )
12954, 128dom2 6904 . 2  |-  ( ( 0 [,] 1 )  e.  _V  ->  ~P NN 
~<_  ( 0 [,] 1
) )
1301, 129ax-mp 8 1  |-  ~P NN  ~<_  ( 0 [,] 1
)
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   _Vcvv 2788    \ cdif 3149    u. cun 3150    C_ wss 3152   (/)c0 3455   ifcif 3565   ~Pcpw 3625   class class class wbr 4023    e. cmpt 4077   dom cdm 4689   -->wf 5251   ` cfv 5255  (class class class)co 5858    ~<_ cdom 6861   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    < clt 8867    <_ cle 8868    / cdiv 9423   NNcn 9746   2c2 9795   3c3 9796   ZZcz 10024   ZZ>=cuz 10230   [,]cicc 10659    seq cseq 11046   ^cexp 11104    ~~> cli 11958   sum_csu 12158
This theorem is referenced by:  rpnnen  12505  opnreen  18336
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-icc 10663  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator