MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem1 Unicode version

Theorem rpnnen2lem1 12493
Description: Lemma for rpnnen2 12504. (Contributed by Mario Carneiro, 13-May-2013.)
Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2lem1  |-  ( ( A  C_  NN  /\  N  e.  NN )  ->  (
( F `  A
) `  N )  =  if ( N  e.  A ,  ( ( 1  /  3 ) ^ N ) ,  0 ) )
Distinct variable groups:    x, n, A    n, N
Allowed substitution hints:    F( x, n)    N( x)

Proof of Theorem rpnnen2lem1
StepHypRef Expression
1 nnex 9752 . . . . 5  |-  NN  e.  _V
21elpw2 4175 . . . 4  |-  ( A  e.  ~P NN  <->  A  C_  NN )
3 eleq2 2344 . . . . . . 7  |-  ( x  =  A  ->  (
n  e.  x  <->  n  e.  A ) )
43ifbid 3583 . . . . . 6  |-  ( x  =  A  ->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )
54mpteq2dv 4107 . . . . 5  |-  ( x  =  A  ->  (
n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3 ) ^
n ) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
6 rpnnen2.1 . . . . 5  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
71mptex 5746 . . . . 5  |-  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )  e.  _V
85, 6, 7fvmpt 5602 . . . 4  |-  ( A  e.  ~P NN  ->  ( F `  A )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
92, 8sylbir 204 . . 3  |-  ( A 
C_  NN  ->  ( F `
 A )  =  ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) )
109fveq1d 5527 . 2  |-  ( A 
C_  NN  ->  ( ( F `  A ) `
 N )  =  ( ( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) `
 N ) )
11 eleq1 2343 . . . 4  |-  ( n  =  N  ->  (
n  e.  A  <->  N  e.  A ) )
12 oveq2 5866 . . . 4  |-  ( n  =  N  ->  (
( 1  /  3
) ^ n )  =  ( ( 1  /  3 ) ^ N ) )
13 eqidd 2284 . . . 4  |-  ( n  =  N  ->  0  =  0 )
1411, 12, 13ifbieq12d 3587 . . 3  |-  ( n  =  N  ->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 )  =  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 ) )
15 eqid 2283 . . 3  |-  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )  =  ( n  e.  NN  |->  if ( n  e.  A , 
( ( 1  / 
3 ) ^ n
) ,  0 ) )
16 ovex 5883 . . . 4  |-  ( ( 1  /  3 ) ^ N )  e. 
_V
17 c0ex 8832 . . . 4  |-  0  e.  _V
1816, 17ifex 3623 . . 3  |-  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 )  e.  _V
1914, 15, 18fvmpt 5602 . 2  |-  ( N  e.  NN  ->  (
( n  e.  NN  |->  if ( n  e.  A ,  ( ( 1  /  3 ) ^
n ) ,  0 ) ) `  N
)  =  if ( N  e.  A , 
( ( 1  / 
3 ) ^ N
) ,  0 ) )
2010, 19sylan9eq 2335 1  |-  ( ( A  C_  NN  /\  N  e.  NN )  ->  (
( F `  A
) `  N )  =  if ( N  e.  A ,  ( ( 1  /  3 ) ^ N ) ,  0 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   ifcif 3565   ~Pcpw 3625    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   0cc0 8737   1c1 8738    / cdiv 9423   NNcn 9746   3c3 9796   ^cexp 11104
This theorem is referenced by:  rpnnen2lem3  12495  rpnnen2lem4  12496  rpnnen2lem9  12501  rpnnen2lem10  12502  rpnnen2lem11  12503
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-i2m1 8805  ax-1ne0 8806  ax-rrecex 8809  ax-cnre 8810
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5861  df-recs 6388  df-rdg 6423  df-nn 9747
  Copyright terms: Public domain W3C validator