MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem11 Unicode version

Theorem rpnnen2lem11 12503
Description: Lemma for rpnnen2 12504. (Contributed by Mario Carneiro, 13-May-2013.)
Hypotheses
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
rpnnen2.2  |-  ( ph  ->  A  C_  NN )
rpnnen2.3  |-  ( ph  ->  B  C_  NN )
rpnnen2.4  |-  ( ph  ->  m  e.  ( A 
\  B ) )
rpnnen2.5  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
rpnnen2.6  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
Assertion
Ref Expression
rpnnen2lem11  |-  ( ph  ->  -.  ps )
Distinct variable groups:    m, n, x, k    A, k, n, x    B, k, n, x   
k, m, F    ph, k
Allowed substitution hints:    ph( x, m, n)    ps( x, k, m, n)    A( m)    B( m)    F( x, n)

Proof of Theorem rpnnen2lem11
StepHypRef Expression
1 rpnnen2.3 . . . 4  |-  ( ph  ->  B  C_  NN )
2 rpnnen2.2 . . . . 5  |-  ( ph  ->  A  C_  NN )
3 rpnnen2.4 . . . . 5  |-  ( ph  ->  m  e.  ( A 
\  B ) )
4 eldifi 3298 . . . . . 6  |-  ( m  e.  ( A  \  B )  ->  m  e.  A )
5 ssel2 3175 . . . . . 6  |-  ( ( A  C_  NN  /\  m  e.  A )  ->  m  e.  NN )
64, 5sylan2 460 . . . . 5  |-  ( ( A  C_  NN  /\  m  e.  ( A  \  B
) )  ->  m  e.  NN )
72, 3, 6syl2anc 642 . . . 4  |-  ( ph  ->  m  e.  NN )
8 rpnnen2.1 . . . . 5  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
98rpnnen2lem6 12498 . . . 4  |-  ( ( B  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  e.  RR )
101, 7, 9syl2anc 642 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  e.  RR )
11 3nn 9878 . . . . . 6  |-  3  e.  NN
12 nnrecre 9782 . . . . . 6  |-  ( 3  e.  NN  ->  (
1  /  3 )  e.  RR )
1311, 12ax-mp 8 . . . . 5  |-  ( 1  /  3 )  e.  RR
147nnnn0d 10018 . . . . 5  |-  ( ph  ->  m  e.  NN0 )
15 reexpcl 11120 . . . . 5  |-  ( ( ( 1  /  3
)  e.  RR  /\  m  e.  NN0 )  -> 
( ( 1  / 
3 ) ^ m
)  e.  RR )
1613, 14, 15sylancr 644 . . . 4  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  RR )
178rpnnen2lem6 12498 . . . . 5  |-  ( ( A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  e.  RR )
182, 7, 17syl2anc 642 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  e.  RR )
19 nnrp 10363 . . . . . . . . 9  |-  ( 3  e.  NN  ->  3  e.  RR+ )
20 rpreccl 10377 . . . . . . . . 9  |-  ( 3  e.  RR+  ->  ( 1  /  3 )  e.  RR+ )
2111, 19, 20mp2b 9 . . . . . . . 8  |-  ( 1  /  3 )  e.  RR+
227nnzd 10116 . . . . . . . 8  |-  ( ph  ->  m  e.  ZZ )
23 rpexpcl 11122 . . . . . . . 8  |-  ( ( ( 1  /  3
)  e.  RR+  /\  m  e.  ZZ )  ->  (
( 1  /  3
) ^ m )  e.  RR+ )
2421, 22, 23sylancr 644 . . . . . . 7  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  RR+ )
2524rpred 10390 . . . . . 6  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  RR )
2625rehalfcld 9958 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  2
)  e.  RR )
273snssd 3760 . . . . . . . . 9  |-  ( ph  ->  { m }  C_  ( A  \  B ) )
28 ssdif 3311 . . . . . . . . . 10  |-  ( A 
C_  NN  ->  ( A 
\  B )  C_  ( NN  \  B ) )
292, 28syl 15 . . . . . . . . 9  |-  ( ph  ->  ( A  \  B
)  C_  ( NN  \  B ) )
3027, 29sstrd 3189 . . . . . . . 8  |-  ( ph  ->  { m }  C_  ( NN  \  B ) )
317snssd 3760 . . . . . . . . 9  |-  ( ph  ->  { m }  C_  NN )
32 ssconb 3309 . . . . . . . . 9  |-  ( ( B  C_  NN  /\  {
m }  C_  NN )  ->  ( B  C_  ( NN  \  { m } )  <->  { m }  C_  ( NN  \  B ) ) )
331, 31, 32syl2anc 642 . . . . . . . 8  |-  ( ph  ->  ( B  C_  ( NN  \  { m }
)  <->  { m }  C_  ( NN  \  B ) ) )
3430, 33mpbird 223 . . . . . . 7  |-  ( ph  ->  B  C_  ( NN  \  { m } ) )
35 difss 3303 . . . . . . . 8  |-  ( NN 
\  { m }
)  C_  NN
3635a1i 10 . . . . . . 7  |-  ( ph  ->  ( NN  \  {
m } )  C_  NN )
378rpnnen2lem7 12499 . . . . . . 7  |-  ( ( B  C_  ( NN  \  { m } )  /\  ( NN  \  { m } ) 
C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
)  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  ( NN  \  { m } ) ) `  k ) )
3834, 36, 7, 37syl3anc 1182 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <_ 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  ( NN  \  { m }
) ) `  k
) )
398rpnnen2lem9 12501 . . . . . . . 8  |-  ( m  e.  NN  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  ( NN  \  { m } ) ) `  k )  =  ( 0  +  ( ( ( 1  /  3
) ^ ( m  +  1 ) )  /  ( 1  -  ( 1  /  3
) ) ) ) )
407, 39syl 15 . . . . . . 7  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  ( NN  \  { m }
) ) `  k
)  =  ( 0  +  ( ( ( 1  /  3 ) ^ ( m  + 
1 ) )  / 
( 1  -  (
1  /  3 ) ) ) ) )
4113recni 8849 . . . . . . . . . . . 12  |-  ( 1  /  3 )  e.  CC
42 expp1 11110 . . . . . . . . . . . 12  |-  ( ( ( 1  /  3
)  e.  CC  /\  m  e.  NN0 )  -> 
( ( 1  / 
3 ) ^ (
m  +  1 ) )  =  ( ( ( 1  /  3
) ^ m )  x.  ( 1  / 
3 ) ) )
4341, 14, 42sylancr 644 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1  / 
3 ) ^ (
m  +  1 ) )  =  ( ( ( 1  /  3
) ^ m )  x.  ( 1  / 
3 ) ) )
4425recnd 8861 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  e.  CC )
45 3cn 9818 . . . . . . . . . . . . 13  |-  3  e.  CC
46 3ne0 9831 . . . . . . . . . . . . 13  |-  3  =/=  0
47 divrec 9440 . . . . . . . . . . . . 13  |-  ( ( ( ( 1  / 
3 ) ^ m
)  e.  CC  /\  3  e.  CC  /\  3  =/=  0 )  ->  (
( ( 1  / 
3 ) ^ m
)  /  3 )  =  ( ( ( 1  /  3 ) ^ m )  x.  ( 1  /  3
) ) )
4845, 46, 47mp3an23 1269 . . . . . . . . . . . 12  |-  ( ( ( 1  /  3
) ^ m )  e.  CC  ->  (
( ( 1  / 
3 ) ^ m
)  /  3 )  =  ( ( ( 1  /  3 ) ^ m )  x.  ( 1  /  3
) ) )
4944, 48syl 15 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  3
)  =  ( ( ( 1  /  3
) ^ m )  x.  ( 1  / 
3 ) ) )
5043, 49eqtr4d 2318 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1  / 
3 ) ^ (
m  +  1 ) )  =  ( ( ( 1  /  3
) ^ m )  /  3 ) )
5150oveq1d 5873 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
( m  +  1 ) )  /  (
1  -  ( 1  /  3 ) ) )  =  ( ( ( ( 1  / 
3 ) ^ m
)  /  3 )  /  ( 1  -  ( 1  /  3
) ) ) )
52 ax-1cn 8795 . . . . . . . . . . . . 13  |-  1  e.  CC
5345, 46pm3.2i 441 . . . . . . . . . . . . 13  |-  ( 3  e.  CC  /\  3  =/=  0 )
54 divsubdir 9456 . . . . . . . . . . . . 13  |-  ( ( 3  e.  CC  /\  1  e.  CC  /\  (
3  e.  CC  /\  3  =/=  0 ) )  ->  ( ( 3  -  1 )  / 
3 )  =  ( ( 3  /  3
)  -  ( 1  /  3 ) ) )
5545, 52, 53, 54mp3an 1277 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( ( 3  / 
3 )  -  (
1  /  3 ) )
56 df-3 9805 . . . . . . . . . . . . . . 15  |-  3  =  ( 2  +  1 )
5756oveq1i 5868 . . . . . . . . . . . . . 14  |-  ( 3  -  1 )  =  ( ( 2  +  1 )  -  1 )
58 2cn 9816 . . . . . . . . . . . . . . 15  |-  2  e.  CC
59 pncan 9057 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  1  e.  CC )  ->  ( ( 2  +  1 )  -  1 )  =  2 )
6058, 52, 59mp2an 653 . . . . . . . . . . . . . 14  |-  ( ( 2  +  1 )  -  1 )  =  2
6157, 60eqtri 2303 . . . . . . . . . . . . 13  |-  ( 3  -  1 )  =  2
6261oveq1i 5868 . . . . . . . . . . . 12  |-  ( ( 3  -  1 )  /  3 )  =  ( 2  /  3
)
6345, 46dividi 9493 . . . . . . . . . . . . 13  |-  ( 3  /  3 )  =  1
6463oveq1i 5868 . . . . . . . . . . . 12  |-  ( ( 3  /  3 )  -  ( 1  / 
3 ) )  =  ( 1  -  (
1  /  3 ) )
6555, 62, 643eqtr3ri 2312 . . . . . . . . . . 11  |-  ( 1  -  ( 1  / 
3 ) )  =  ( 2  /  3
)
6665oveq2i 5869 . . . . . . . . . 10  |-  ( ( ( ( 1  / 
3 ) ^ m
)  /  3 )  /  ( 1  -  ( 1  /  3
) ) )  =  ( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
2  /  3 ) )
67 2ne0 9829 . . . . . . . . . . . . 13  |-  2  =/=  0
6858, 67pm3.2i 441 . . . . . . . . . . . 12  |-  ( 2  e.  CC  /\  2  =/=  0 )
69 divcan7 9469 . . . . . . . . . . . 12  |-  ( ( ( ( 1  / 
3 ) ^ m
)  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  ( 3  e.  CC  /\  3  =/=  0 ) )  -> 
( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
2  /  3 ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7068, 53, 69mp3an23 1269 . . . . . . . . . . 11  |-  ( ( ( 1  /  3
) ^ m )  e.  CC  ->  (
( ( ( 1  /  3 ) ^
m )  /  3
)  /  ( 2  /  3 ) )  =  ( ( ( 1  /  3 ) ^ m )  / 
2 ) )
7144, 70syl 15 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
2  /  3 ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7266, 71syl5eq 2327 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( 1  /  3 ) ^ m )  / 
3 )  /  (
1  -  ( 1  /  3 ) ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7351, 72eqtrd 2315 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
( m  +  1 ) )  /  (
1  -  ( 1  /  3 ) ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7473oveq2d 5874 . . . . . . 7  |-  ( ph  ->  ( 0  +  ( ( ( 1  / 
3 ) ^ (
m  +  1 ) )  /  ( 1  -  ( 1  / 
3 ) ) ) )  =  ( 0  +  ( ( ( 1  /  3 ) ^ m )  / 
2 ) ) )
7526recnd 8861 . . . . . . . 8  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  2
)  e.  CC )
7675addid2d 9013 . . . . . . 7  |-  ( ph  ->  ( 0  +  ( ( ( 1  / 
3 ) ^ m
)  /  2 ) )  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7740, 74, 763eqtrd 2319 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  ( NN  \  { m }
) ) `  k
)  =  ( ( ( 1  /  3
) ^ m )  /  2 ) )
7838, 77breqtrd 4047 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <_  ( ( ( 1  /  3 ) ^
m )  /  2
) )
79 rphalflt 10380 . . . . . 6  |-  ( ( ( 1  /  3
) ^ m )  e.  RR+  ->  ( ( ( 1  /  3
) ^ m )  /  2 )  < 
( ( 1  / 
3 ) ^ m
) )
8024, 79syl 15 . . . . 5  |-  ( ph  ->  ( ( ( 1  /  3 ) ^
m )  /  2
)  <  ( (
1  /  3 ) ^ m ) )
8110, 26, 25, 78, 80lelttrd 8974 . . . 4  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <  ( ( 1  / 
3 ) ^ m
) )
82 nnuz 10263 . . . . . . . . . 10  |-  NN  =  ( ZZ>= `  1 )
8382uztrn2 10245 . . . . . . . . 9  |-  ( ( m  e.  NN  /\  k  e.  ( ZZ>= `  m ) )  -> 
k  e.  NN )
847, 83sylan 457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( ZZ>= `  m )
)  ->  k  e.  NN )
858rpnnen2lem1 12493 . . . . . . . . 9  |-  ( ( { m }  C_  NN  /\  k  e.  NN )  ->  ( ( F `
 { m }
) `  k )  =  if ( k  e. 
{ m } , 
( ( 1  / 
3 ) ^ k
) ,  0 ) )
8631, 85sylan 457 . . . . . . . 8  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( F `  { m } ) `  k
)  =  if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
8784, 86syldan 456 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( ZZ>= `  m )
)  ->  ( ( F `  { m } ) `  k
)  =  if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
8887sumeq2dv 12176 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  =  sum_ k  e.  ( ZZ>= `  m ) if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
89 uzid 10242 . . . . . . . . 9  |-  ( m  e.  ZZ  ->  m  e.  ( ZZ>= `  m )
)
9022, 89syl 15 . . . . . . . 8  |-  ( ph  ->  m  e.  ( ZZ>= `  m ) )
9190snssd 3760 . . . . . . 7  |-  ( ph  ->  { m }  C_  ( ZZ>= `  m )
)
92 vex 2791 . . . . . . . . 9  |-  m  e. 
_V
93 oveq2 5866 . . . . . . . . . 10  |-  ( k  =  m  ->  (
( 1  /  3
) ^ k )  =  ( ( 1  /  3 ) ^
m ) )
9493eleq1d 2349 . . . . . . . . 9  |-  ( k  =  m  ->  (
( ( 1  / 
3 ) ^ k
)  e.  CC  <->  ( (
1  /  3 ) ^ m )  e.  CC ) )
9592, 94ralsn 3674 . . . . . . . 8  |-  ( A. k  e.  { m }  ( ( 1  /  3 ) ^
k )  e.  CC  <->  ( ( 1  /  3
) ^ m )  e.  CC )
9644, 95sylibr 203 . . . . . . 7  |-  ( ph  ->  A. k  e.  {
m }  ( ( 1  /  3 ) ^ k )  e.  CC )
97 ssid 3197 . . . . . . . . 9  |-  ( ZZ>= `  m )  C_  ( ZZ>=
`  m )
9897a1i 10 . . . . . . . 8  |-  ( ph  ->  ( ZZ>= `  m )  C_  ( ZZ>= `  m )
)
9998orcd 381 . . . . . . 7  |-  ( ph  ->  ( ( ZZ>= `  m
)  C_  ( ZZ>= `  m )  \/  ( ZZ>=
`  m )  e. 
Fin ) )
100 sumss2 12199 . . . . . . 7  |-  ( ( ( { m }  C_  ( ZZ>= `  m )  /\  A. k  e.  {
m }  ( ( 1  /  3 ) ^ k )  e.  CC )  /\  (
( ZZ>= `  m )  C_  ( ZZ>= `  m )  \/  ( ZZ>= `  m )  e.  Fin ) )  ->  sum_ k  e.  { m }  ( ( 1  /  3 ) ^
k )  =  sum_ k  e.  ( ZZ>= `  m ) if ( k  e.  { m } ,  ( (
1  /  3 ) ^ k ) ,  0 ) )
10191, 96, 99, 100syl21anc 1181 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  {
m }  ( ( 1  /  3 ) ^ k )  = 
sum_ k  e.  (
ZZ>= `  m ) if ( k  e.  {
m } ,  ( ( 1  /  3
) ^ k ) ,  0 ) )
10293sumsn 12213 . . . . . . 7  |-  ( ( m  e.  NN  /\  ( ( 1  / 
3 ) ^ m
)  e.  CC )  ->  sum_ k  e.  {
m }  ( ( 1  /  3 ) ^ k )  =  ( ( 1  / 
3 ) ^ m
) )
1037, 44, 102syl2anc 642 . . . . . 6  |-  ( ph  -> 
sum_ k  e.  {
m }  ( ( 1  /  3 ) ^ k )  =  ( ( 1  / 
3 ) ^ m
) )
10488, 101, 1033eqtr2d 2321 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  =  ( ( 1  /  3
) ^ m ) )
1053, 4syl 15 . . . . . . 7  |-  ( ph  ->  m  e.  A )
106105snssd 3760 . . . . . 6  |-  ( ph  ->  { m }  C_  A )
1078rpnnen2lem7 12499 . . . . . 6  |-  ( ( { m }  C_  A  /\  A  C_  NN  /\  m  e.  NN )  ->  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )
108106, 2, 7, 107syl3anc 1182 . . . . 5  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  {
m } ) `  k )  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )
109104, 108eqbrtrrd 4045 . . . 4  |-  ( ph  ->  ( ( 1  / 
3 ) ^ m
)  <_  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
) )
11010, 16, 18, 81, 109ltletrd 8976 . . 3  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  <  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )
)
11110, 110gtned 8954 . 2  |-  ( ph  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =/=  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
112 rpnnen2.5 . . . . 5  |-  ( ph  ->  A. n  e.  NN  ( n  <  m  -> 
( n  e.  A  <->  n  e.  B ) ) )
113 rpnnen2.6 . . . . 5  |-  ( ps  <->  sum_ k  e.  NN  (
( F `  A
) `  k )  =  sum_ k  e.  NN  ( ( F `  B ) `  k
) )
1148, 2, 1, 3, 112, 113rpnnen2lem10 12502 . . . 4  |-  ( (
ph  /\  ps )  -> 
sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )
)
115114ex 423 . . 3  |-  ( ph  ->  ( ps  ->  sum_ k  e.  ( ZZ>= `  m )
( ( F `  A ) `  k
)  =  sum_ k  e.  ( ZZ>= `  m )
( ( F `  B ) `  k
) ) )
116115necon3ad 2482 . 2  |-  ( ph  ->  ( sum_ k  e.  (
ZZ>= `  m ) ( ( F `  A
) `  k )  =/=  sum_ k  e.  (
ZZ>= `  m ) ( ( F `  B
) `  k )  ->  -.  ps ) )
117111, 116mpd 14 1  |-  ( ph  ->  -.  ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 176    \/ wo 357    /\ wa 358    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    \ cdif 3149    C_ wss 3152   ifcif 3565   ~Pcpw 3625   {csn 3640   class class class wbr 4023    e. cmpt 4077   ` cfv 5255  (class class class)co 5858   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737   1c1 8738    + caddc 8740    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037    / cdiv 9423   NNcn 9746   2c2 9795   3c3 9796   NN0cn0 9965   ZZcz 10024   ZZ>=cuz 10230   RR+crp 10354   ^cexp 11104   sum_csu 12158
This theorem is referenced by:  rpnnen2  12504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator