MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rpnnen2lem6 Unicode version

Theorem rpnnen2lem6 12498
Description: Lemma for rpnnen2 12504. (Contributed by Mario Carneiro, 13-May-2013.) (Revised by Mario Carneiro, 30-Apr-2014.)
Hypothesis
Ref Expression
rpnnen2.1  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
Assertion
Ref Expression
rpnnen2lem6  |-  ( ( A  C_  NN  /\  M  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  A ) `  k
)  e.  RR )
Distinct variable groups:    x, n, k, A    k, F    k, M, n, x
Allowed substitution hints:    F( x, n)

Proof of Theorem rpnnen2lem6
StepHypRef Expression
1 eqid 2283 . 2  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
2 nnz 10045 . . 3  |-  ( M  e.  NN  ->  M  e.  ZZ )
32adantl 452 . 2  |-  ( ( A  C_  NN  /\  M  e.  NN )  ->  M  e.  ZZ )
4 eqidd 2284 . 2  |-  ( ( ( A  C_  NN  /\  M  e.  NN )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( F `
 A ) `  k )  =  ( ( F `  A
) `  k )
)
5 rpnnen2.1 . . . . 5  |-  F  =  ( x  e.  ~P NN  |->  ( n  e.  NN  |->  if ( n  e.  x ,  ( ( 1  /  3
) ^ n ) ,  0 ) ) )
65rpnnen2lem2 12494 . . . 4  |-  ( A 
C_  NN  ->  ( F `
 A ) : NN --> RR )
76ad2antrr 706 . . 3  |-  ( ( ( A  C_  NN  /\  M  e.  NN )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( F `  A ) : NN --> RR )
8 nnuz 10263 . . . . 5  |-  NN  =  ( ZZ>= `  1 )
98uztrn2 10245 . . . 4  |-  ( ( M  e.  NN  /\  k  e.  ( ZZ>= `  M ) )  -> 
k  e.  NN )
109adantll 694 . . 3  |-  ( ( ( A  C_  NN  /\  M  e.  NN )  /\  k  e.  (
ZZ>= `  M ) )  ->  k  e.  NN )
11 ffvelrn 5663 . . 3  |-  ( ( ( F `  A
) : NN --> RR  /\  k  e.  NN )  ->  ( ( F `  A ) `  k
)  e.  RR )
127, 10, 11syl2anc 642 . 2  |-  ( ( ( A  C_  NN  /\  M  e.  NN )  /\  k  e.  (
ZZ>= `  M ) )  ->  ( ( F `
 A ) `  k )  e.  RR )
135rpnnen2lem5 12497 . 2  |-  ( ( A  C_  NN  /\  M  e.  NN )  ->  seq  M (  +  ,  ( F `  A ) )  e.  dom  ~~>  )
141, 3, 4, 12, 13isumrecl 12228 1  |-  ( ( A  C_  NN  /\  M  e.  NN )  ->  sum_ k  e.  ( ZZ>= `  M )
( ( F `  A ) `  k
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684    C_ wss 3152   ifcif 3565   ~Pcpw 3625    e. cmpt 4077   -->wf 5251   ` cfv 5255  (class class class)co 5858   RRcr 8736   0cc0 8737   1c1 8738    / cdiv 9423   NNcn 9746   3c3 9796   ZZcz 10024   ZZ>=cuz 10230   ^cexp 11104   sum_csu 12158
This theorem is referenced by:  rpnnen2lem10  12502  rpnnen2lem11  12503  rpnnen2  12504
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-pm 6775  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-fl 10925  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-limsup 11945  df-clim 11962  df-rlim 11963  df-sum 12159
  Copyright terms: Public domain W3C validator