Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.3v Unicode version

Theorem rr19.3v 2909
 Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the non-empty class condition of r19.3rzv 3547 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 228 . . . 4
21rspcv 2880 . . 3
32ralimia 2616 . 2
4 ax-1 5 . . . 4
54ralrimiv 2625 . . 3
65ralimi 2618 . 2
73, 6impbii 180 1
 Colors of variables: wff set class Syntax hints:   wb 176   wceq 1623   wcel 1684  wral 2543 This theorem is referenced by:  ispos2  14082 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790
 Copyright terms: Public domain W3C validator