MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rr19.3v Unicode version

Theorem rr19.3v 2909
Description: Restricted quantifier version of Theorem 19.3 of [Margaris] p. 89. We don't need the non-empty class condition of r19.3rzv 3547 when there is an outer quantifier. (Contributed by NM, 25-Oct-2012.)
Assertion
Ref Expression
rr19.3v  |-  ( A. x  e.  A  A. y  e.  A  ph  <->  A. x  e.  A  ph )
Distinct variable groups:    y, A    x, y    ph, y
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem rr19.3v
StepHypRef Expression
1 biidd 228 . . . 4  |-  ( y  =  x  ->  ( ph 
<-> 
ph ) )
21rspcv 2880 . . 3  |-  ( x  e.  A  ->  ( A. y  e.  A  ph 
->  ph ) )
32ralimia 2616 . 2  |-  ( A. x  e.  A  A. y  e.  A  ph  ->  A. x  e.  A  ph )
4 ax-1 5 . . . 4  |-  ( ph  ->  ( y  e.  A  ->  ph ) )
54ralrimiv 2625 . . 3  |-  ( ph  ->  A. y  e.  A  ph )
65ralimi 2618 . 2  |-  ( A. x  e.  A  ph  ->  A. x  e.  A  A. y  e.  A  ph )
73, 6impbii 180 1  |-  ( A. x  e.  A  A. y  e.  A  ph  <->  A. x  e.  A  ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 176    = wceq 1623    e. wcel 1684   A.wral 2543
This theorem is referenced by:  ispos2  14082
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-v 2790
  Copyright terms: Public domain W3C validator