Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrncmslem Structured version   Unicode version

Theorem rrncmslem 26495
Description: Lemma for rrncms 26496. (Contributed by Jeff Madsen, 6-Jun-2014.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1  |-  X  =  ( RR  ^m  I
)
rrndstprj1.1  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
rrncms.3  |-  J  =  ( MetOpen `  ( Rn `  I ) )
rrncms.4  |-  ( ph  ->  I  e.  Fin )
rrncms.5  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
rrncms.6  |-  ( ph  ->  F : NN --> X )
rrncms.7  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
Assertion
Ref Expression
rrncmslem  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Distinct variable groups:    m, I    t, m, F
Allowed substitution hints:    ph( t, m)    P( t, m)    I( t)    J( t, m)    M( t, m)    X( t, m)

Proof of Theorem rrncmslem
Dummy variables  k  n  x  y  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lmrel 17284 . 2  |-  Rel  ( ~~> t `  J )
2 fvex 5734 . . . . . . . 8  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  m )
) )  e.  _V
3 rrncms.7 . . . . . . . 8  |-  P  =  ( m  e.  I  |->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  m ) ) ) )
42, 3fnmpti 5565 . . . . . . 7  |-  P  Fn  I
54a1i 11 . . . . . 6  |-  ( ph  ->  P  Fn  I )
6 nnuz 10511 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
7 1z 10301 . . . . . . . . 9  |-  1  e.  ZZ
87a1i 11 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  1  e.  ZZ )
9 fveq2 5720 . . . . . . . . . . . . . . . 16  |-  ( t  =  k  ->  ( F `  t )  =  ( F `  k ) )
109fveq1d 5722 . . . . . . . . . . . . . . 15  |-  ( t  =  k  ->  (
( F `  t
) `  n )  =  ( ( F `
 k ) `  n ) )
11 eqid 2435 . . . . . . . . . . . . . . 15  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  =  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )
12 fvex 5734 . . . . . . . . . . . . . . 15  |-  ( ( F `  k ) `
 n )  e. 
_V
1310, 11, 12fvmpt 5798 . . . . . . . . . . . . . 14  |-  ( k  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
1413adantl 453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  =  ( ( F `  k ) `
 n ) )
15 rrncms.6 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : NN --> X )
1615ffvelrnda 5862 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  X )
17 rrnval.1 . . . . . . . . . . . . . . . . 17  |-  X  =  ( RR  ^m  I
)
1816, 17syl6eleq 2525 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  e.  ( RR  ^m  I
) )
19 elmapi 7030 . . . . . . . . . . . . . . . 16  |-  ( ( F `  k )  e.  ( RR  ^m  I )  ->  ( F `  k ) : I --> RR )
2018, 19syl 16 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k ) : I --> RR )
2120ffvelrnda 5862 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  k  e.  NN )  /\  n  e.  I )  ->  (
( F `  k
) `  n )  e.  RR )
2221an32s 780 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( F `  k
) `  n )  e.  RR )
2314, 22eqeltrd 2509 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  RR )
2423recnd 9104 . . . . . . . . . . 11  |-  ( ( ( ph  /\  n  e.  I )  /\  k  e.  NN )  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  e.  CC )
25 rrncms.5 . . . . . . . . . . . . . 14  |-  ( ph  ->  F  e.  ( Cau `  ( Rn `  I
) ) )
26 rrncms.4 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  I  e.  Fin )
2717rrnmet 26492 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  ( Rn `  I )  e.  ( Met `  X
) )
2826, 27syl 16 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( Rn `  I
)  e.  ( Met `  X ) )
29 metxmet 18354 . . . . . . . . . . . . . . . 16  |-  ( ( Rn `  I )  e.  ( Met `  X
)  ->  ( Rn `  I )  e.  ( * Met `  X
) )
3028, 29syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( Rn `  I
)  e.  ( * Met `  X ) )
317a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  1  e.  ZZ )
32 eqidd 2436 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  k  e.  NN )  ->  ( F `
 k )  =  ( F `  k
) )
33 eqidd 2436 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  =  ( F `  j
) )
346, 30, 31, 32, 33, 15iscauf 19223 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( F  e.  ( Cau `  ( Rn
`  I ) )  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x ) )
3525, 34mpbid 202 . . . . . . . . . . . . 13  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )
3635adantr 452 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x )
3726ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  I  e.  Fin )
38 simpllr 736 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  n  e.  I
)
3915ad3antrrr 711 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  F : NN --> X )
406uztrn2 10493 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  NN )
4140adantll 695 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  k  e.  NN )
4239, 41ffvelrnd 5863 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  k )  e.  X
)
43 simplr 732 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  j  e.  NN )
4439, 43ffvelrnd 5863 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( F `  j )  e.  X
)
45 rrndstprj1.1 . . . . . . . . . . . . . . . . . . . . 21  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
4617, 45rrndstprj1 26493 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( I  e.  Fin  /\  n  e.  I )  /\  ( ( F `
 k )  e.  X  /\  ( F `
 j )  e.  X ) )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <_  ( ( F `  k )
( Rn `  I
) ( F `  j ) ) )
4737, 38, 42, 44, 46syl22anc 1185 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  k
) ( Rn `  I ) ( F `
 j ) ) )
4828ad3antrrr 711 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( Rn `  I )  e.  ( Met `  X ) )
49 metsym 18370 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  k )  e.  X  /\  ( F `  j )  e.  X )  ->  (
( F `  k
) ( Rn `  I ) ( F `
 j ) )  =  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) ) )
5048, 42, 44, 49syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) ( Rn `  I ) ( F `  j
) )  =  ( ( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5147, 50breqtrd 4228 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5251adantllr 700 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  <_  (
( F `  j
) ( Rn `  I ) ( F `
 k ) ) )
5345remet 18811 . . . . . . . . . . . . . . . . . . . . 21  |-  M  e.  ( Met `  RR )
5453a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  M  e.  ( Met `  RR ) )
55 simpll 731 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ph  /\  n  e.  I )
)
5655, 41, 22syl2anc 643 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 k ) `  n )  e.  RR )
5715ffvelrnda 5862 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  X )
5857, 17syl6eleq 2525 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j )  e.  ( RR  ^m  I
) )
59 elmapi 7030 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( F `  j )  e.  ( RR  ^m  I )  ->  ( F `  j ) : I --> RR )
6058, 59syl 16 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( (
ph  /\  j  e.  NN )  ->  ( F `
 j ) : I --> RR )
6160ffvelrnda 5862 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  j  e.  NN )  /\  n  e.  I )  ->  (
( F `  j
) `  n )  e.  RR )
6261an32s 780 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  (
( F `  j
) `  n )  e.  RR )
6362adantr 452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) `  n )  e.  RR )
64 metcl 18352 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( M  e.  ( Met `  RR )  /\  (
( F `  k
) `  n )  e.  RR  /\  ( ( F `  j ) `
 n )  e.  RR )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  e.  RR )
6554, 56, 63, 64syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
6665adantllr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  e.  RR )
67 metcl 18352 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( Rn `  I
)  e.  ( Met `  X )  /\  ( F `  j )  e.  X  /\  ( F `  k )  e.  X )  ->  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  e.  RR )
6848, 44, 42, 67syl3anc 1184 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
6968adantllr 700 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  e.  RR )
70 rpre 10608 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  e.  RR+  ->  x  e.  RR )
7170adantl 453 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  x  e.  RR )
7271ad2antrr 707 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  x  e.  RR )
73 lelttr 9155 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  e.  RR  /\  ( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  e.  RR  /\  x  e.  RR )  ->  ( ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  <_ 
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  /\  ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x )  ->  (
( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7466, 69, 72, 73syl3anc 1184 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <_  ( ( F `
 j ) ( Rn `  I ) ( F `  k
) )  /\  (
( F `  j
) ( Rn `  I ) ( F `
 k ) )  <  x )  -> 
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7552, 74mpand 657 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  ( (
( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x ) )
7675ralimdva 2776 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x ) )
7776reximdva 2810 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  I )  /\  x  e.  RR+ )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  j ) ( Rn `  I
) ( F `  k ) )  < 
x  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7877ralimdva 2776 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x )
)
7945remetdval 18810 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( ( F `  j ) `  n
)  e.  RR )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
8056, 63, 79syl2anc 643 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( ( F `
 j ) `  n ) ) ) )
8141, 13syl 16 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
82 fveq2 5720 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( t  =  j  ->  ( F `  t )  =  ( F `  j ) )
8382fveq1d 5722 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( t  =  j  ->  (
( F `  t
) `  n )  =  ( ( F `
 j ) `  n ) )
84 fvex 5734 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( F `  j ) `
 n )  e. 
_V
8583, 11, 84fvmpt 5798 . . . . . . . . . . . . . . . . . . . . 21  |-  ( j  e.  NN  ->  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
)  =  ( ( F `  j ) `
 n ) )
8685ad2antlr 708 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j )  =  ( ( F `  j ) `  n
) )
8781, 86oveq12d 6091 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  k )  -  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 j ) )  =  ( ( ( F `  k ) `
 n )  -  ( ( F `  j ) `  n
) ) )
8887fveq2d 5724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  =  ( abs `  (
( ( F `  k ) `  n
)  -  ( ( F `  j ) `
 n ) ) ) )
8980, 88eqtr4d 2470 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( F `  k ) `
 n ) M ( ( F `  j ) `  n
) )  =  ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  k
)  -  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
) `  j )
) ) )
9089breq1d 4214 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  /\  k  e.  (
ZZ>= `  j ) )  ->  ( ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  ( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9190ralbidva 2713 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( ( F `  k ) `  n
) M ( ( F `  j ) `
 n ) )  <  x  <->  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9291rexbidva 2714 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( ( F `
 j ) `  n ) )  < 
x  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  -  ( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  j ) ) )  <  x ) )
9392ralbidv 2717 . . . . . . . . . . . . 13  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( ( F `  j
) `  n )
)  <  x  <->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9478, 93sylibd 206 . . . . . . . . . . . 12  |-  ( (
ph  /\  n  e.  I )  ->  ( A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  j ) ( Rn
`  I ) ( F `  k ) )  <  x  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x ) )
9536, 94mpd 15 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( abs `  (
( ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) `  k )  -  (
( t  e.  NN  |->  ( ( F `  t ) `  n
) ) `  j
) ) )  < 
x )
96 nnex 9996 . . . . . . . . . . . . 13  |-  NN  e.  _V
9796mptex 5958 . . . . . . . . . . . 12  |-  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) )  e.  _V
9897a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  _V )
996, 24, 95, 98caucvg 12462 . . . . . . . . . 10  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  )
100 climdm 12338 . . . . . . . . . 10  |-  ( ( t  e.  NN  |->  ( ( F `  t
) `  n )
)  e.  dom  ~~>  <->  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) )  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
10199, 100sylib 189 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) ) )
102 fveq2 5720 . . . . . . . . . . . . 13  |-  ( m  =  n  ->  (
( F `  t
) `  m )  =  ( ( F `
 t ) `  n ) )
103102mpteq2dv 4288 . . . . . . . . . . . 12  |-  ( m  =  n  ->  (
t  e.  NN  |->  ( ( F `  t
) `  m )
)  =  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) )
104103fveq2d 5724 . . . . . . . . . . 11  |-  ( m  =  n  ->  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `  m
) ) )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `
 t ) `  n ) ) ) )
105 fvex 5734 . . . . . . . . . . 11  |-  (  ~~>  `  (
t  e.  NN  |->  ( ( F `  t
) `  n )
) )  e.  _V
106104, 3, 105fvmpt 5798 . . . . . . . . . 10  |-  ( n  e.  I  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
107106adantl 453 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  =  (  ~~>  `  ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) ) )
108101, 107breqtrrd 4230 . . . . . . . 8  |-  ( (
ph  /\  n  e.  I )  ->  (
t  e.  NN  |->  ( ( F `  t
) `  n )
)  ~~>  ( P `  n ) )
1096, 8, 108, 23climrecl 12367 . . . . . . 7  |-  ( (
ph  /\  n  e.  I )  ->  ( P `  n )  e.  RR )
110109ralrimiva 2781 . . . . . 6  |-  ( ph  ->  A. n  e.  I 
( P `  n
)  e.  RR )
111 ffnfv 5886 . . . . . 6  |-  ( P : I --> RR  <->  ( P  Fn  I  /\  A. n  e.  I  ( P `  n )  e.  RR ) )
1125, 110, 111sylanbrc 646 . . . . 5  |-  ( ph  ->  P : I --> RR )
113 reex 9071 . . . . . 6  |-  RR  e.  _V
114 elmapg 7023 . . . . . 6  |-  ( ( RR  e.  _V  /\  I  e.  Fin )  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
115113, 26, 114sylancr 645 . . . . 5  |-  ( ph  ->  ( P  e.  ( RR  ^m  I )  <-> 
P : I --> RR ) )
116112, 115mpbird 224 . . . 4  |-  ( ph  ->  P  e.  ( RR 
^m  I ) )
117116, 17syl6eleqr 2526 . . 3  |-  ( ph  ->  P  e.  X )
118 1nn 10001 . . . . . . 7  |-  1  e.  NN
11926ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
12016adantlr 696 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
121117ad2antrr 707 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
12217rrnmval 26491 . . . . . . . . . . . 12  |-  ( ( I  e.  Fin  /\  ( F `  k )  e.  X  /\  P  e.  X )  ->  (
( F `  k
) ( Rn `  I ) P )  =  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) ) )
123119, 120, 121, 122syl3anc 1184 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) ) )
124 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  I  =  (/) )
125124sumeq1d 12485 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  sum_ y  e.  (/)  ( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 ) )
126 sum0 12505 . . . . . . . . . . . . 13  |-  sum_ y  e.  (/)  ( ( ( ( F `  k
) `  y )  -  ( P `  y ) ) ^
2 )  =  0
127125, 126syl6eq 2483 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  -> 
sum_ y  e.  I 
( ( ( ( F `  k ) `
 y )  -  ( P `  y ) ) ^ 2 )  =  0 )
128127fveq2d 5724 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  sum_ y  e.  I  (
( ( ( F `
 k ) `  y )  -  ( P `  y )
) ^ 2 ) )  =  ( sqr `  0 ) )
129123, 128eqtrd 2467 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  ( sqr `  0 ) )
130 sqr0 12037 . . . . . . . . . 10  |-  ( sqr `  0 )  =  0
131129, 130syl6eq 2483 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  =  0 )
132 simplrl 737 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
133132rpgt0d 10641 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  0  <  x )
134131, 133eqbrtrd 4224 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =  (/) ) )  /\  k  e.  NN )  ->  ( ( F `  k ) ( Rn
`  I ) P )  <  x )
135134ralrimiva 2781 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
)
136 fveq2 5720 . . . . . . . . . 10  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  ( ZZ>= `  1 )
)
137136, 6syl6eqr 2485 . . . . . . . . 9  |-  ( j  =  1  ->  ( ZZ>=
`  j )  =  NN )
138137raleqdv 2902 . . . . . . . 8  |-  ( j  =  1  ->  ( A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
) ( Rn `  I ) P )  <  x  <->  A. k  e.  NN  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
139138rspcev 3044 . . . . . . 7  |-  ( ( 1  e.  NN  /\  A. k  e.  NN  (
( F `  k
) ( Rn `  I ) P )  <  x )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
140118, 135, 139sylancr 645 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
141140expr 599 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
1427a1i 11 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  1  e.  ZZ )
143 simprl 733 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  x  e.  RR+ )
144 simprr 734 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  =/=  (/) )
14526adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  I  e.  Fin )
146 hashnncl 11635 . . . . . . . . . . . . . . . . 17  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
147145, 146syl 16 . . . . . . . . . . . . . . . 16  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
148144, 147mpbird 224 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  NN )
149148nnrpd 10637 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( # `
 I )  e.  RR+ )
150149rpsqrcld 12204 . . . . . . . . . . . . 13  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( sqr `  ( # `  I
) )  e.  RR+ )
151143, 150rpdivcld 10655 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
152151adantr 452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
15313adantl 453 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( t  e.  NN  |->  ( ( F `  t ) `
 n ) ) `
 k )  =  ( ( F `  k ) `  n
) )
154108adantlr 696 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( t  e.  NN  |->  ( ( F `  t ) `  n
) )  ~~>  ( P `
 n ) )
1556, 142, 152, 153, 154climi2 12295 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) )
1566rexuz3 12142 . . . . . . . . . . . 12  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
1577, 156ax-mp 8 . . . . . . . . . . 11  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
15822adantllr 700 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( F `
 k ) `  n )  e.  RR )
159109adantlr 696 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( P `  n
)  e.  RR )
160159adantr 452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( P `  n )  e.  RR )
16145remetdval 18810 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( F `  k ) `  n
)  e.  RR  /\  ( P `  n )  e.  RR )  -> 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  =  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) ) )
162158, 160, 161syl2anc 643 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  =  ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) ) )
163162breq1d 4214 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  k  e.  NN )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
16440, 163sylan2 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
165164anassrs 630 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I
)  /\  j  e.  NN )  /\  k  e.  ( ZZ>= `  j )
)  ->  ( (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  <->  ( abs `  (
( ( F `  k ) `  n
)  -  ( P `
 n ) ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
166165ralbidva 2713 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  A. k  e.  (
ZZ>= `  j ) ( abs `  ( ( ( F `  k
) `  n )  -  ( P `  n ) ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) ) ) )
167166rexbidva 2714 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
168157, 167syl5bbr 251 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  <->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( abs `  ( ( ( F `
 k ) `  n )  -  ( P `  n )
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )
169155, 168mpbird 224 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  n  e.  I )  ->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) ( ( ( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) ) )
170169ralrimiva 2781 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
1716rexuz3 12142 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
1727, 171ax-mp 8 . . . . . . . . 9  |-  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
173 rexfiuz 12141 . . . . . . . . . 10  |-  ( I  e.  Fin  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
174145, 173syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
175172, 174syl5bb 249 . . . . . . . 8  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  <->  A. n  e.  I  E. j  e.  ZZ  A. k  e.  ( ZZ>= `  j )
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) ) )
176170, 175mpbird 224 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) ) )
17726ad2antrr 707 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  Fin )
178 simplrr 738 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  =/=  (/) )
179 eldifsn 3919 . . . . . . . . . . . . . 14  |-  ( I  e.  ( Fin  \  { (/)
} )  <->  ( I  e.  Fin  /\  I  =/=  (/) ) )
180177, 178, 179sylanbrc 646 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  I  e.  ( Fin  \  { (/) } ) )
18115adantr 452 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  F : NN --> X )
182181ffvelrnda 5862 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( F `  k
)  e.  X )
183117ad2antrr 707 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  P  e.  X )
184151adantr 452 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )
18517, 45rrndstprj2 26494 . . . . . . . . . . . . . 14  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
( x  /  ( sqr `  ( # `  I
) ) )  e.  RR+  /\  A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) )
186185expr 599 . . . . . . . . . . . . 13  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  ( F `
 k )  e.  X  /\  P  e.  X )  /\  (
x  /  ( sqr `  ( # `  I
) ) )  e.  RR+ )  ->  ( A. n  e.  I  (
( ( F `  k ) `  n
) M ( P `
 n ) )  <  ( x  / 
( sqr `  ( # `
 I ) ) )  ->  ( ( F `  k )
( Rn `  I
) P )  < 
( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) ) ) )
187180, 182, 183, 184, 186syl31anc 1187 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  ( ( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) ) ) )
188 simplrl 737 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  RR+ )
189188rpcnd 10640 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  x  e.  CC )
190150adantr 452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  RR+ )
191190rpcnd 10640 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  e.  CC )
192190rpne0d 10643 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( sqr `  ( # `
 I ) )  =/=  0 )
193189, 191, 192divcan1d 9781 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( x  / 
( sqr `  ( # `
 I ) ) )  x.  ( sqr `  ( # `  I
) ) )  =  x )
194193breq2d 4216 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( ( ( F `
 k ) ( Rn `  I ) P )  <  (
( x  /  ( sqr `  ( # `  I
) ) )  x.  ( sqr `  ( # `
 I ) ) )  <->  ( ( F `
 k ) ( Rn `  I ) P )  <  x
) )
195187, 194sylibd 206 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  k  e.  NN )  ->  ( A. n  e.  I  ( ( ( F `  k ) `
 n ) M ( P `  n
) )  <  (
x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
19640, 195sylan2 461 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  ( j  e.  NN  /\  k  e.  ( ZZ>= `  j ) ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
197196anassrs 630 . . . . . . . . 9  |-  ( ( ( ( ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  /\  k  e.  ( ZZ>=
`  j ) )  ->  ( A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  -> 
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
198197ralimdva 2776 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  e.  RR+  /\  I  =/=  (/) ) )  /\  j  e.  NN )  ->  ( A. k  e.  ( ZZ>= `  j ) A. n  e.  I 
( ( ( F `
 k ) `  n ) M ( P `  n ) )  <  ( x  /  ( sqr `  ( # `
 I ) ) )  ->  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
199198reximdva 2810 . . . . . . 7  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  ( E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) A. n  e.  I  ( (
( F `  k
) `  n ) M ( P `  n ) )  < 
( x  /  ( sqr `  ( # `  I
) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x ) )
200176, 199mpd 15 . . . . . 6  |-  ( (
ph  /\  ( x  e.  RR+  /\  I  =/=  (/) ) )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
201200expr 599 . . . . 5  |-  ( (
ph  /\  x  e.  RR+ )  ->  ( I  =/=  (/)  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) )
202141, 201pm2.61dne 2675 . . . 4  |-  ( (
ph  /\  x  e.  RR+ )  ->  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x )
203202ralrimiva 2781 . . 3  |-  ( ph  ->  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j ) ( ( F `  k ) ( Rn `  I
) P )  < 
x )
204 rrncms.3 . . . 4  |-  J  =  ( MetOpen `  ( Rn `  I ) )
205204, 30, 6, 31, 32, 15lmmbrf 19205 . . 3  |-  ( ph  ->  ( F ( ~~> t `  J ) P  <->  ( P  e.  X  /\  A. x  e.  RR+  E. j  e.  NN  A. k  e.  ( ZZ>= `  j )
( ( F `  k ) ( Rn
`  I ) P )  <  x ) ) )
206117, 203, 205mpbir2and 889 . 2  |-  ( ph  ->  F ( ~~> t `  J ) P )
207 releldm 5094 . 2  |-  ( ( Rel  ( ~~> t `  J )  /\  F
( ~~> t `  J
) P )  ->  F  e.  dom  ( ~~> t `  J ) )
2081, 206, 207sylancr 645 1  |-  ( ph  ->  F  e.  dom  ( ~~> t `  J )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1652    e. wcel 1725    =/= wne 2598   A.wral 2697   E.wrex 2698   _Vcvv 2948    \ cdif 3309   (/)c0 3620   {csn 3806   class class class wbr 4204    e. cmpt 4258    X. cxp 4868   dom cdm 4870    |` cres 4872    o. ccom 4874   Rel wrel 4875    Fn wfn 5441   -->wf 5442   ` cfv 5446  (class class class)co 6073    ^m cmap 7010   Fincfn 7101   RRcr 8979   0cc0 8980   1c1 8981    x. cmul 8985    < clt 9110    <_ cle 9111    - cmin 9281    / cdiv 9667   NNcn 9990   2c2 10039   ZZcz 10272   ZZ>=cuz 10478   RR+crp 10602   ^cexp 11372   #chash 11608   sqrcsqr 12028   abscabs 12029    ~~> cli 12268   sum_csu 12469   * Metcxmt 16676   Metcme 16677   MetOpencmopn 16681   ~~> tclm 17280   Caucca 19196   Rncrrn 26488
This theorem is referenced by:  rrncms  26496
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-13 1727  ax-14 1729  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416  ax-rep 4312  ax-sep 4322  ax-nul 4330  ax-pow 4369  ax-pr 4395  ax-un 4693  ax-inf2 7586  ax-cnex 9036  ax-resscn 9037  ax-1cn 9038  ax-icn 9039  ax-addcl 9040  ax-addrcl 9041  ax-mulcl 9042  ax-mulrcl 9043  ax-mulcom 9044  ax-addass 9045  ax-mulass 9046  ax-distr 9047  ax-i2m1 9048  ax-1ne0 9049  ax-1rid 9050  ax-rnegex 9051  ax-rrecex 9052  ax-cnre 9053  ax-pre-lttri 9054  ax-pre-lttrn 9055  ax-pre-ltadd 9056  ax-pre-mulgt0 9057  ax-pre-sup 9058  ax-addf 9059  ax-mulf 9060
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-mo 2285  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ne 2600  df-nel 2601  df-ral 2702  df-rex 2703  df-reu 2704  df-rmo 2705  df-rab 2706  df-v 2950  df-sbc 3154  df-csb 3244  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-pss 3328  df-nul 3621  df-if 3732  df-pw 3793  df-sn 3812  df-pr 3813  df-tp 3814  df-op 3815  df-uni 4008  df-int 4043  df-iun 4087  df-br 4205  df-opab 4259  df-mpt 4260  df-tr 4295  df-eprel 4486  df-id 4490  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-ord 4576  df-on 4577  df-lim 4578  df-suc 4579  df-om 4838  df-xp 4876  df-rel 4877  df-cnv 4878  df-co 4879  df-dm 4880  df-rn 4881  df-res 4882  df-ima 4883  df-iota 5410  df-fun 5448  df-fn 5449  df-f 5450  df-f1 5451  df-fo 5452  df-f1o 5453  df-fv 5454  df-isom 5455  df-ov 6076  df-oprab 6077  df-mpt2 6078  df-1st 6341  df-2nd 6342  df-riota 6541  df-recs 6625  df-rdg 6660  df-1o 6716  df-oadd 6720  df-er 6897  df-map 7012  df-pm 7013  df-en 7102  df-dom 7103  df-sdom 7104  df-fin 7105  df-sup 7438  df-oi 7469  df-card 7816  df-pnf 9112  df-mnf 9113  df-xr 9114  df-ltxr 9115  df-le 9116  df-sub 9283  df-neg 9284  df-div 9668  df-nn 9991  df-2 10048  df-3 10049  df-4 10050  df-n0 10212  df-z 10273  df-uz 10479  df-q 10565  df-rp 10603  df-xneg 10700  df-xadd 10701  df-xmul 10702  df-ico 10912  df-fz 11034  df-fzo 11126  df-fl 11192  df-seq 11314  df-exp 11373  df-hash 11609  df-cj 11894  df-re 11895  df-im 11896  df-sqr 12030  df-abs 12031  df-limsup 12255  df-clim 12272  df-rlim 12273  df-sum 12470  df-topgen 13657  df-psmet 16684  df-xmet 16685  df-met 16686  df-bl 16687  df-mopn 16688  df-top 16953  df-bases 16955  df-topon 16956  df-lm 17283  df-cau 19199  df-rrn 26489
  Copyright terms: Public domain W3C validator