Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrndstprj2 Unicode version

Theorem rrndstprj2 26555
Description: Bound on the distance between two points in Euclidean space given bounds on the distances in each coordinate. This theorem and rrndstprj1 26554 can be used to show that the supremum norm and Euclidean norm are equivalent. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 13-Sep-2015.)
Hypotheses
Ref Expression
rrnval.1  |-  X  =  ( RR  ^m  I
)
rrndstprj1.1  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
Assertion
Ref Expression
rrndstprj2  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( F ( Rn `  I ) G )  <  ( R  x.  ( sqr `  ( # `  I
) ) ) )
Distinct variable groups:    n, G    n, I    n, M    R, n    n, F
Allowed substitution hint:    X( n)

Proof of Theorem rrndstprj2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 simpl1 958 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  I  e.  ( Fin  \  { (/) } ) )
2 eldifi 3298 . . . 4  |-  ( I  e.  ( Fin  \  { (/)
} )  ->  I  e.  Fin )
31, 2syl 15 . . 3  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  I  e.  Fin )
4 simpl2 959 . . 3  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  F  e.  X
)
5 simpl3 960 . . 3  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  G  e.  X
)
6 rrnval.1 . . . 4  |-  X  =  ( RR  ^m  I
)
76rrnmval 26552 . . 3  |-  ( ( I  e.  Fin  /\  F  e.  X  /\  G  e.  X )  ->  ( F ( Rn
`  I ) G )  =  ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) ) )
83, 4, 5, 7syl3anc 1182 . 2  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( F ( Rn `  I ) G )  =  ( sqr `  sum_ k  e.  I  ( (
( F `  k
)  -  ( G `
 k ) ) ^ 2 ) ) )
9 eldifsni 3750 . . . . . 6  |-  ( I  e.  ( Fin  \  { (/)
} )  ->  I  =/=  (/) )
101, 9syl 15 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  I  =/=  (/) )
114, 6syl6eleq 2373 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  F  e.  ( RR  ^m  I ) )
12 elmapi 6792 . . . . . . . . 9  |-  ( F  e.  ( RR  ^m  I )  ->  F : I --> RR )
1311, 12syl 15 . . . . . . . 8  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  F : I --> RR )
14 ffvelrn 5663 . . . . . . . 8  |-  ( ( F : I --> RR  /\  k  e.  I )  ->  ( F `  k
)  e.  RR )
1513, 14sylan 457 . . . . . . 7  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( F `  k )  e.  RR )
165, 6syl6eleq 2373 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  G  e.  ( RR  ^m  I ) )
17 elmapi 6792 . . . . . . . . 9  |-  ( G  e.  ( RR  ^m  I )  ->  G : I --> RR )
1816, 17syl 15 . . . . . . . 8  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  G : I --> RR )
19 ffvelrn 5663 . . . . . . . 8  |-  ( ( G : I --> RR  /\  k  e.  I )  ->  ( G `  k
)  e.  RR )
2018, 19sylan 457 . . . . . . 7  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( G `  k )  e.  RR )
2115, 20resubcld 9211 . . . . . 6  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( F `  k )  -  ( G `  k ) )  e.  RR )
2221resqcld 11271 . . . . 5  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( (
( F `  k
)  -  ( G `
 k ) ) ^ 2 )  e.  RR )
23 simprl 732 . . . . . . . 8  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  R  e.  RR+ )
2423rpred 10390 . . . . . . 7  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  R  e.  RR )
2524resqcld 11271 . . . . . 6  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( R ^
2 )  e.  RR )
2625adantr 451 . . . . 5  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( R ^ 2 )  e.  RR )
27 absresq 11787 . . . . . . 7  |-  ( ( ( F `  k
)  -  ( G `
 k ) )  e.  RR  ->  (
( abs `  (
( F `  k
)  -  ( G `
 k ) ) ) ^ 2 )  =  ( ( ( F `  k )  -  ( G `  k ) ) ^
2 ) )
2821, 27syl 15 . . . . . 6  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( abs `  ( ( F `
 k )  -  ( G `  k ) ) ) ^ 2 )  =  ( ( ( F `  k
)  -  ( G `
 k ) ) ^ 2 ) )
29 rrndstprj1.1 . . . . . . . . . 10  |-  M  =  ( ( abs  o.  -  )  |`  ( RR 
X.  RR ) )
3029remetdval 18295 . . . . . . . . 9  |-  ( ( ( F `  k
)  e.  RR  /\  ( G `  k )  e.  RR )  -> 
( ( F `  k ) M ( G `  k ) )  =  ( abs `  ( ( F `  k )  -  ( G `  k )
) ) )
3115, 20, 30syl2anc 642 . . . . . . . 8  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( F `  k ) M ( G `  k ) )  =  ( abs `  (
( F `  k
)  -  ( G `
 k ) ) ) )
32 simprr 733 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  A. n  e.  I 
( ( F `  n ) M ( G `  n ) )  <  R )
33 fveq2 5525 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
34 fveq2 5525 . . . . . . . . . . . 12  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
3533, 34oveq12d 5876 . . . . . . . . . . 11  |-  ( n  =  k  ->  (
( F `  n
) M ( G `
 n ) )  =  ( ( F `
 k ) M ( G `  k
) ) )
3635breq1d 4033 . . . . . . . . . 10  |-  ( n  =  k  ->  (
( ( F `  n ) M ( G `  n ) )  <  R  <->  ( ( F `  k ) M ( G `  k ) )  < 
R ) )
3736rspccva 2883 . . . . . . . . 9  |-  ( ( A. n  e.  I 
( ( F `  n ) M ( G `  n ) )  <  R  /\  k  e.  I )  ->  ( ( F `  k ) M ( G `  k ) )  <  R )
3832, 37sylan 457 . . . . . . . 8  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( F `  k ) M ( G `  k ) )  < 
R )
3931, 38eqbrtrrd 4045 . . . . . . 7  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  <  R
)
4021recnd 8861 . . . . . . . . 9  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( F `  k )  -  ( G `  k ) )  e.  CC )
4140abscld 11918 . . . . . . . 8  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( abs `  ( ( F `  k )  -  ( G `  k )
) )  e.  RR )
4224adantr 451 . . . . . . . 8  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  R  e.  RR )
4340absge0d 11926 . . . . . . . 8  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  0  <_  ( abs `  ( ( F `  k )  -  ( G `  k ) ) ) )
4423rpge0d 10394 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  0  <_  R
)
4544adantr 451 . . . . . . . 8  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  0  <_  R )
4641, 42, 43, 45lt2sqd 11279 . . . . . . 7  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( abs `  ( ( F `
 k )  -  ( G `  k ) ) )  <  R  <->  ( ( abs `  (
( F `  k
)  -  ( G `
 k ) ) ) ^ 2 )  <  ( R ^
2 ) ) )
4739, 46mpbid 201 . . . . . 6  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( ( abs `  ( ( F `
 k )  -  ( G `  k ) ) ) ^ 2 )  <  ( R ^ 2 ) )
4828, 47eqbrtrrd 4045 . . . . 5  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  ( (
( F `  k
)  -  ( G `
 k ) ) ^ 2 )  < 
( R ^ 2 ) )
493, 10, 22, 26, 48fsumlt 12258 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 )  <  sum_ k  e.  I 
( R ^ 2 ) )
503, 22fsumrecl 12207 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 )  e.  RR )
5121sqge0d 11272 . . . . . 6  |-  ( ( ( ( I  e.  ( Fin  \  { (/)
} )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  /\  k  e.  I
)  ->  0  <_  ( ( ( F `  k )  -  ( G `  k )
) ^ 2 ) )
523, 22, 51fsumge0 12253 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  0  <_  sum_ k  e.  I  ( (
( F `  k
)  -  ( G `
 k ) ) ^ 2 ) )
53 resqrth 11741 . . . . 5  |-  ( (
sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 )  e.  RR  /\  0  <_ 
sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) )  ->  ( ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) ) ^ 2 )  =  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) )
5450, 52, 53syl2anc 642 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) ) ^ 2 )  =  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) )
55 hashnncl 11354 . . . . . . . . . . . 12  |-  ( I  e.  Fin  ->  (
( # `  I )  e.  NN  <->  I  =/=  (/) ) )
563, 55syl 15 . . . . . . . . . . 11  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( # `  I )  e.  NN  <->  I  =/=  (/) ) )
5710, 56mpbird 223 . . . . . . . . . 10  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( # `  I
)  e.  NN )
5857nnrpd 10389 . . . . . . . . 9  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( # `  I
)  e.  RR+ )
5958rpred 10390 . . . . . . . 8  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( # `  I
)  e.  RR )
6058rpge0d 10394 . . . . . . . 8  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  0  <_  ( # `
 I ) )
61 resqrth 11741 . . . . . . . 8  |-  ( ( ( # `  I
)  e.  RR  /\  0  <_  ( # `  I
) )  ->  (
( sqr `  ( # `
 I ) ) ^ 2 )  =  ( # `  I
) )
6259, 60, 61syl2anc 642 . . . . . . 7  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( sqr `  ( # `  I
) ) ^ 2 )  =  ( # `  I ) )
6362oveq2d 5874 . . . . . 6  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( R ^ 2 )  x.  ( ( sqr `  ( # `
 I ) ) ^ 2 ) )  =  ( ( R ^ 2 )  x.  ( # `  I
) ) )
6425recnd 8861 . . . . . . 7  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( R ^
2 )  e.  CC )
6558rpcnd 10392 . . . . . . 7  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( # `  I
)  e.  CC )
6664, 65mulcomd 8856 . . . . . 6  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( R ^ 2 )  x.  ( # `  I
) )  =  ( ( # `  I
)  x.  ( R ^ 2 ) ) )
6763, 66eqtrd 2315 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( R ^ 2 )  x.  ( ( sqr `  ( # `
 I ) ) ^ 2 ) )  =  ( ( # `  I )  x.  ( R ^ 2 ) ) )
6823rpcnd 10392 . . . . . 6  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  R  e.  CC )
6958rpsqrcld 11894 . . . . . . 7  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( sqr `  ( # `
 I ) )  e.  RR+ )
7069rpcnd 10392 . . . . . 6  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( sqr `  ( # `
 I ) )  e.  CC )
7168, 70sqmuld 11257 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( R  x.  ( sqr `  ( # `
 I ) ) ) ^ 2 )  =  ( ( R ^ 2 )  x.  ( ( sqr `  ( # `
 I ) ) ^ 2 ) ) )
72 fsumconst 12252 . . . . . 6  |-  ( ( I  e.  Fin  /\  ( R ^ 2 )  e.  CC )  ->  sum_ k  e.  I  ( R ^ 2 )  =  ( ( # `  I )  x.  ( R ^ 2 ) ) )
733, 64, 72syl2anc 642 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  sum_ k  e.  I 
( R ^ 2 )  =  ( (
# `  I )  x.  ( R ^ 2 ) ) )
7467, 71, 733eqtr4d 2325 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( R  x.  ( sqr `  ( # `
 I ) ) ) ^ 2 )  =  sum_ k  e.  I 
( R ^ 2 ) )
7549, 54, 743brtr4d 4053 . . 3  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) ) ^ 2 )  <  ( ( R  x.  ( sqr `  ( # `
 I ) ) ) ^ 2 ) )
7650, 52resqrcld 11900 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( sqr `  sum_ k  e.  I  (
( ( F `  k )  -  ( G `  k )
) ^ 2 ) )  e.  RR )
7723, 69rpmulcld 10406 . . . . 5  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( R  x.  ( sqr `  ( # `  I ) ) )  e.  RR+ )
7877rpred 10390 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( R  x.  ( sqr `  ( # `  I ) ) )  e.  RR )
7950, 52sqrge0d 11903 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  0  <_  ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) ) )
8077rpge0d 10394 . . . 4  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  0  <_  ( R  x.  ( sqr `  ( # `  I
) ) ) )
8176, 78, 79, 80lt2sqd 11279 . . 3  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) )  <  ( R  x.  ( sqr `  ( # `
 I ) ) )  <->  ( ( sqr `  sum_ k  e.  I 
( ( ( F `
 k )  -  ( G `  k ) ) ^ 2 ) ) ^ 2 )  <  ( ( R  x.  ( sqr `  ( # `
 I ) ) ) ^ 2 ) ) )
8275, 81mpbird 223 . 2  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( sqr `  sum_ k  e.  I  (
( ( F `  k )  -  ( G `  k )
) ^ 2 ) )  <  ( R  x.  ( sqr `  ( # `
 I ) ) ) )
838, 82eqbrtrd 4043 1  |-  ( ( ( I  e.  ( Fin  \  { (/) } )  /\  F  e.  X  /\  G  e.  X )  /\  ( R  e.  RR+  /\  A. n  e.  I  (
( F `  n
) M ( G `
 n ) )  <  R ) )  ->  ( F ( Rn `  I ) G )  <  ( R  x.  ( sqr `  ( # `  I
) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543    \ cdif 3149   (/)c0 3455   {csn 3640   class class class wbr 4023    X. cxp 4687    |` cres 4691    o. ccom 4693   -->wf 5251   ` cfv 5255  (class class class)co 5858    ^m cmap 6772   Fincfn 6863   CCcc 8735   RRcr 8736   0cc0 8737    x. cmul 8742    < clt 8867    <_ cle 8868    - cmin 9037   NNcn 9746   2c2 9795   RR+crp 10354   ^cexp 11104   #chash 11337   sqrcsqr 11718   abscabs 11719   sum_csu 12158   Rncrrn 26549
This theorem is referenced by:  rrncmslem  26556  rrnequiv  26559
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512  ax-inf2 7342  ax-cnex 8793  ax-resscn 8794  ax-1cn 8795  ax-icn 8796  ax-addcl 8797  ax-addrcl 8798  ax-mulcl 8799  ax-mulrcl 8800  ax-mulcom 8801  ax-addass 8802  ax-mulass 8803  ax-distr 8804  ax-i2m1 8805  ax-1ne0 8806  ax-1rid 8807  ax-rnegex 8808  ax-rrecex 8809  ax-cnre 8810  ax-pre-lttri 8811  ax-pre-lttrn 8812  ax-pre-ltadd 8813  ax-pre-mulgt0 8814  ax-pre-sup 8815
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-nel 2449  df-ral 2548  df-rex 2549  df-reu 2550  df-rmo 2551  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-int 3863  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-se 4353  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-isom 5264  df-ov 5861  df-oprab 5862  df-mpt2 5863  df-1st 6122  df-2nd 6123  df-riota 6304  df-recs 6388  df-rdg 6423  df-1o 6479  df-oadd 6483  df-er 6660  df-map 6774  df-en 6864  df-dom 6865  df-sdom 6866  df-fin 6867  df-sup 7194  df-oi 7225  df-card 7572  df-pnf 8869  df-mnf 8870  df-xr 8871  df-ltxr 8872  df-le 8873  df-sub 9039  df-neg 9040  df-div 9424  df-nn 9747  df-2 9804  df-3 9805  df-n0 9966  df-z 10025  df-uz 10231  df-rp 10355  df-ico 10662  df-fz 10783  df-fzo 10871  df-seq 11047  df-exp 11105  df-hash 11338  df-cj 11584  df-re 11585  df-im 11586  df-sqr 11720  df-abs 11721  df-clim 11962  df-sum 12159  df-rrn 26550
  Copyright terms: Public domain W3C validator