Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rrpsscn Structured version   Unicode version

Theorem rrpsscn 27695
Description: The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
Assertion
Ref Expression
rrpsscn  |-  RR+  C_  CC

Proof of Theorem rrpsscn
StepHypRef Expression
1 rpcn 10620 . 2  |-  ( x  e.  RR+  ->  x  e.  CC )
21ssriv 3352 1  |-  RR+  C_  CC
Colors of variables: wff set class
Syntax hints:    C_ wss 3320   CCcc 8988   RR+crp 10612
This theorem is referenced by:  stirlinglem8  27806
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417  ax-resscn 9047
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-rab 2714  df-in 3327  df-ss 3334  df-rp 10613
  Copyright terms: Public domain W3C validator