MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc3ev Unicode version

Theorem rspc3ev 2907
Description: 3-variable restricted existentional specialization, using implicit substitution. (Contributed by NM, 25-Jul-2012.)
Hypotheses
Ref Expression
rspc3v.1  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
rspc3v.2  |-  ( y  =  B  ->  ( ch 
<->  th ) )
rspc3v.3  |-  ( z  =  C  ->  ( th 
<->  ps ) )
Assertion
Ref Expression
rspc3ev  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
Distinct variable groups:    ps, z    ch, x    th, y    x, y, z, A    y, B, z    z, C    x, R    x, S, y    x, T, y, z
Allowed substitution hints:    ph( x, y, z)    ps( x, y)    ch( y, z)    th( x, z)    B( x)    C( x, y)    R( y, z)    S( z)

Proof of Theorem rspc3ev
StepHypRef Expression
1 simpl1 958 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  A  e.  R )
2 simpl2 959 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  B  e.  S )
3 rspc3v.3 . . . 4  |-  ( z  =  C  ->  ( th 
<->  ps ) )
43rspcev 2897 . . 3  |-  ( ( C  e.  T  /\  ps )  ->  E. z  e.  T  th )
543ad2antl3 1119 . 2  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  E. z  e.  T  th )
6 rspc3v.1 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ch ) )
76rexbidv 2577 . . 3  |-  ( x  =  A  ->  ( E. z  e.  T  ph  <->  E. z  e.  T  ch ) )
8 rspc3v.2 . . . 4  |-  ( y  =  B  ->  ( ch 
<->  th ) )
98rexbidv 2577 . . 3  |-  ( y  =  B  ->  ( E. z  e.  T  ch 
<->  E. z  e.  T  th ) )
107, 9rspc2ev 2905 . 2  |-  ( ( A  e.  R  /\  B  e.  S  /\  E. z  e.  T  th )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
111, 2, 5, 10syl3anc 1182 1  |-  ( ( ( A  e.  R  /\  B  e.  S  /\  C  e.  T
)  /\  ps )  ->  E. x  e.  R  E. y  e.  S  E. z  e.  T  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1632    e. wcel 1696   E.wrex 2557
This theorem is referenced by:  pmltpclem1  18824  br8  24184  br6  24185  axlowdim  24661  axeuclidlem  24662  jm2.27  27204  3dim1lem5  30277  lplni2  30348
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-rex 2562  df-v 2803
  Copyright terms: Public domain W3C validator