Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rspc3v Structured version   Unicode version

Theorem rspc3v 3053
 Description: 3-variable restricted specialization, using implicit substitution. (Contributed by NM, 10-May-2005.)
Hypotheses
Ref Expression
rspc3v.1
rspc3v.2
rspc3v.3
Assertion
Ref Expression
rspc3v
Distinct variable groups:   ,   ,   ,   ,,,   ,,   ,   ,   ,,   ,,,
Allowed substitution hints:   (,,)   (,)   (,)   (,)   ()   (,)   (,)   ()

Proof of Theorem rspc3v
StepHypRef Expression
1 rspc3v.1 . . . . 5
21ralbidv 2717 . . . 4
3 rspc3v.2 . . . . 5
43ralbidv 2717 . . . 4
52, 4rspc2v 3050 . . 3
6 rspc3v.3 . . . 4
76rspcv 3040 . . 3
85, 7sylan9 639 . 2
983impa 1148 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177   wa 359   w3a 936   wceq 1652   wcel 1725  wral 2697 This theorem is referenced by:  swopolem  4504  isopolem  6057  caovassg  6237  caovcang  6240  caovordig  6244  caovordg  6246  caovdig  6253  caovdirg  6256  caofass  6330  caoftrn  6331  prslem  14380  posi  14399  latdisdlem  14607  dlatmjdi  14612  mndlem1  14686  gaass  15066  islmodd  15948  lsscl  16011  assalem  16368  psmettri2  18332  xmettri2  18362  grpoass  21783  isgrp2d  21815  rngodi  21965  rngodir  21966  rngoass  21967  vcdi  22023  vcdir  22024  vcass  22025  lnolin  22247  lnopl  23409  lnfnl  23426  lfli  29796  cvlexch1  30063 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-v 2950
 Copyright terms: Public domain W3C validator