Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspcegf Unicode version

Theorem rspcegf 27694
Description: A version of rspcev 2884 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rspcegf.1  |-  F/ x ps
rspcegf.2  |-  F/_ x A
rspcegf.3  |-  F/_ x B
rspcegf.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspcegf  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )

Proof of Theorem rspcegf
StepHypRef Expression
1 rspcegf.2 . . . 4  |-  F/_ x A
2 rspcegf.3 . . . . . 6  |-  F/_ x B
31, 2nfel 2427 . . . . 5  |-  F/ x  A  e.  B
4 rspcegf.1 . . . . 5  |-  F/ x ps
53, 4nfan 1771 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
6 eleq1 2343 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
7 rspcegf.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
86, 7anbi12d 691 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
91, 5, 8spcegf 2864 . . 3  |-  ( A  e.  B  ->  (
( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) ) )
109anabsi5 790 . 2  |-  ( ( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) )
11 df-rex 2549 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
1210, 11sylibr 203 1  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   E.wex 1528   F/wnf 1531    = wceq 1623    e. wcel 1684   F/_wnfc 2406   E.wrex 2544
This theorem is referenced by:  stoweidlem46  27795
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rex 2549  df-v 2790
  Copyright terms: Public domain W3C validator