Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rspcegf Structured version   Unicode version

Theorem rspcegf 27625
Description: A version of rspcev 3044 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rspcegf.1  |-  F/ x ps
rspcegf.2  |-  F/_ x A
rspcegf.3  |-  F/_ x B
rspcegf.4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rspcegf  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )

Proof of Theorem rspcegf
StepHypRef Expression
1 rspcegf.2 . . . 4  |-  F/_ x A
2 rspcegf.3 . . . . . 6  |-  F/_ x B
31, 2nfel 2579 . . . . 5  |-  F/ x  A  e.  B
4 rspcegf.1 . . . . 5  |-  F/ x ps
53, 4nfan 1846 . . . 4  |-  F/ x
( A  e.  B  /\  ps )
6 eleq1 2495 . . . . 5  |-  ( x  =  A  ->  (
x  e.  B  <->  A  e.  B ) )
7 rspcegf.4 . . . . 5  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
86, 7anbi12d 692 . . . 4  |-  ( x  =  A  ->  (
( x  e.  B  /\  ph )  <->  ( A  e.  B  /\  ps )
) )
91, 5, 8spcegf 3024 . . 3  |-  ( A  e.  B  ->  (
( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) ) )
109anabsi5 791 . 2  |-  ( ( A  e.  B  /\  ps )  ->  E. x
( x  e.  B  /\  ph ) )
11 df-rex 2703 . 2  |-  ( E. x  e.  B  ph  <->  E. x ( x  e.  B  /\  ph )
)
1210, 11sylibr 204 1  |-  ( ( A  e.  B  /\  ps )  ->  E. x  e.  B  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1550   F/wnf 1553    = wceq 1652    e. wcel 1725   F/_wnfc 2558   E.wrex 2698
This theorem is referenced by:  stoweidlem46  27726
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-rex 2703  df-v 2950
  Copyright terms: Public domain W3C validator